Antworten:
Erläuterung:
Sei die Seiten eines größeren Dreiecks
Die Bereiche der beiden Zifferblätter haben ein Verhältnis von 16:25. Wie ist das Verhältnis des Radius des kleineren Zifferblatts zum Radius des größeren Ziffernblatts? Wie groß ist der Radius des größeren Zifferblattes?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => r_2 = 5
Zwei ähnliche Dreiecke haben einen Skalierungsfaktor von 1: 3. Wenn der Umfang des kleineren Dreiecks 27 beträgt, wie groß ist der Umfang des größeren Dreiecks?
81 Ein "Skalierungsfaktor" bedeutet, dass das größere Dreieck um einen bestimmten Betrag größer ist. Ein Skalierungsfaktor von 1: 3 bedeutet, dass beispielsweise ein Dreieck dreimal so groß ist wie das andere. Wenn also das kleine Dreieck einen Umfang von 27 hat, hat das große Dreieck einen dreimal so großen Umfang. Nach der Rechnung 3 * 27 = 81 - der Umfang des großen Dreiecks beträgt dann 81 Einheiten.
Die Kerndichte eines Planeten ist rho_1 und die der äußeren Hülle ist rho_2. Der Radius des Kerns ist R und der des Planeten 2R. Das Gravitationsfeld an der äußeren Oberfläche des Planeten ist das gleiche wie an der Oberfläche des Kerns, was das Verhältnis rho / rho_2 ist. ?
3 Nehmen wir an, die Masse des Kerns des Planeten ist m und die der äußeren Schale ist m '. Das Feld auf der Oberfläche des Kerns ist (Gm) / R ^ 2. Auf der Oberfläche der Schale wird es (G (m + m ')) / (2R) ^ 2 Gegebenermaßen sind beide gleich, also (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 oder 4m = m + m 'oder m' = 3m Nun ist m = 4/3 pi R ^ 3 rho_1 (Masse = Volumen * Dichte) und m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Daher ist 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Also ist rho_1 = 7/3 rho_2 oder (rho_1) / (rho_1) / ) = 7/3