Antworten:
Erläuterung:
Und 503 ist eine Primzahl
weil
Die Quadratwurzel von 2012 ist also
Antworten:
Siehe unten.
Erläuterung:
Wir haben
Diese Quadratwurzel kann manuell extrahiert werden
en.wikipedia.org/wiki/Methods_of_computing_square_roots
und
so ist die Nummer
Der Umfang eines Quadrats ist 12 cm größer als der eines anderen Quadrats. Seine Fläche übersteigt die Fläche des anderen Quadrats um 39 cm². Wie finden Sie den Umfang jedes Quadrats?
32 cm und 20 cm lassen die Seite des größeren Quadrats a und das kleinere Quadrat sei b 4a - 4b = 12, so dass a - b = 3 a ^ 2 - b ^ 2 = 39 (a + b) (ab) = 39 ist, wobei die beiden Gleichungen we geteilt werden erhalten Sie a + b = 13, addieren Sie nun a + b und ab, und wir erhalten 2a = 16 a = 8 und b = 5. Der Umfang ist 4a = 32 cm und 4b = 20 cm
Die Seite eines Quadrats ist 4 cm kürzer als die Seite eines zweiten Quadrats. Wenn die Summe ihrer Flächen 40 Quadratzentimeter beträgt, wie finden Sie die Länge einer Seite des größeren Quadrats?
Die Länge der Seite des größeren Quadrats beträgt 6 cm. Sei 'a' die Seite des kürzeren Quadrats. Dann ist 'a + 4' die Seite des größeren Quadrats. Wir wissen, dass die Fläche eines Quadrats dem Quadrat seiner Seite entspricht. A ^ 2 + (a + 4) ^ 2 = 40 (gegeben) oder 2 a ^ 2 + 8 * a -24 = 0 oder a ^ 2 + 4 * a -12 = 0 oder (a + 6) * ( a-2) = 0 Entweder a = 2 oder a = -6 Seitenlänge kann nicht negativ sein. :. a = 2. Daher ist die Länge der Seite des größeren Quadrats a + 4 = 6 [Answer]
Die Summe der Ziffern der dreistelligen Zahl ist 15. Die Ziffer der Einheit ist kleiner als die Summe der anderen Ziffern. Die Zehnerstelle ist der Durchschnitt der anderen Ziffern. Wie findest du die Nummer?
A = 3 "; b = 5"; c = 7 Gegeben: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ Betrachten Gleichung (3) -> 2b = (a + c) schreiben der Gleichung (1) als (a + c) + b = 15 Durch Substitution dieser 2b + b = wird 15 Farbe (blau) (=> b = 5) '~~~~~~~~~~~~~~~~~~~~~~~~~ Jetzt haben wir: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~~~~~~~~~~~ Von 1_a "&quo