Antworten:
Erläuterung:
Um die Periode der Funktion herauszufinden, können wir die Tatsache verwenden, dass die Periode als ausgedrückt wird
In diesem Fall haben wir
Der Graph der Funktion f (x) = (x + 2) (x + 6) ist unten gezeigt. Welche Aussage zur Funktion trifft zu? Die Funktion ist für alle reellen Werte von x mit x> -4 positiv. Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Die Summe zweier aufeinanderfolgender Zahlen ist 77. Die Differenz zwischen der Hälfte der kleineren und einem Drittel der größeren Zahl ist 6. Wenn x die kleinere Zahl ist und y die größere Zahl ist, stellen die beiden Gleichungen die Summe und die Differenz dar die Zahlen?
X + y = 77 1 / 2x-1 / 3y = 6 Wenn Sie die Zahlen wissen wollen, lesen Sie weiter: x = 38 y = 39
Welches sind die Eigenschaften des Graphen der Funktion f (x) = (x + 1) ^ 2 + 2? Zutreffendes bitte ankreuzen. Die Domain besteht aus reellen Zahlen. Der Bereich ist alle reellen Zahlen größer oder gleich 1. Der y-Achsenabschnitt ist 3. Der Graph der Funktion ist 1 Einheit höher und
Erster und dritter sind wahr, zweiter ist falsch, vierter ist unvollendet. - Die Domain besteht in der Tat aus reellen Zahlen. Sie können diese Funktion als x ^ 2 + 2x + 3 umschreiben, was ein Polynom ist, und daher die Domäne mathbb {R} hat. Der Bereich ist nicht alle reelle Zahl größer oder gleich 1, da das Minimum 2 ist Tatsache. (x + 1) ^ 2 ist eine horizontale Translation (eine Einheit links) der "strandard" -Parabel x ^ 2, die den Bereich [0, infty] hat. Wenn Sie 2 hinzufügen, verschieben Sie den Graphen vertikal um zwei Einheiten, sodass der Bereich [2, infty) ist. Um den y-Achsena