Wie findet man die Ableitung von f (x) = [(2x-5) ^ 5] / [(x ^ 2 +2) ^ 2] anhand der Kettenregel?

Wie findet man die Ableitung von f (x) = [(2x-5) ^ 5] / [(x ^ 2 +2) ^ 2] anhand der Kettenregel?
Anonim

Antworten:

# = (10 (2x-5) ^ 4 * (x ^ 2 + 2) ^ 2 - (2x-5) ^ 5 * 4x (x ^ 2 + 2)) / (x ^ 2 + 2) ^ 4 #

Erläuterung:

# f '(x) = (f' (x) * g (x) - f (x) * g '(x)) / (g (x)) ^ 2 #

#f '(x) = (((5 (2x-5) ^ 4 * 2) (x ^ 2 + 2) ^ 2) - (2x-5) ^ 5 * (2 (x ^ 2 + 2) * 2x)) / ((x ^ 2 + 2) ^ 2) ^ 2 #

# = (10 (2x-5) ^ 4 * (x ^ 2 + 2) ^ 2 - (2x-5) ^ 5 * 4x (x ^ 2 + 2)) / (x ^ 2 + 2) ^ 4 #

Sie können mehr reduzieren, aber es ist langweilig, diese Gleichung zu lösen, verwenden Sie einfach eine algebraische Methode.