Antworten:
Erläuterung:
Wie findet man die Ableitung von f (x) = 3x ^ 5 + 4x anhand der Limitdefinition?
F '(x) = 15x ^ 4 + 4 Die Grundregel lautet, dass x ^ n zu nx ^ (n-1) wird, also 5 * 3x ^ (5-1) + 1 * 4x ^ (1-1). Dies ist f '(x) = 15x ^ 4 + 4
Wie findet man die Ableitung von f (x) = [(2x-5) ^ 5] / [(x ^ 2 +2) ^ 2] anhand der Kettenregel?
= (10 (2x-5) ^ 4 * (x ^ 2 + 2) ^ 2 - (2x-5) ^ 5 * 4x (x ^ 2 + 2)) / (x ^ 2 + 2) ^ 4 f ' (x) = (f '(x) * g (x) - f (x) * g' (x)) / (g (x)) ^ 2 f '(x) = ((5 (2x-5)) ) ^ 4 * 2) (x ^ 2 + 2) ^ 2) - (2x-5) ^ 5 * (2 (x ^ 2 + 2) * 2x)) / ((x ^ 2 + 2) ^ 2) ^ 2 = (10 (2x-5) ^ 4 * (x ^ 2 + 2) ^ 2 - (2x-5) ^ 5 × 4x (x ^ 2 + 2)) / (x ^ 2 + 2) ^ 4 Sie können mehr reduzieren, aber es ist langweilig, diese Gleichung zu lösen, verwenden Sie einfach eine algebraische Methode.
Wie verwendet man die Grenzwertdefinition der Ableitung, um die Ableitung von y = -4x-2 zu finden?
-4 Die Ableitung wird wie folgt definiert: lim (h-> 0) (f (x + h) -f (x)) / h Wenden wir die obige Formel auf die gegebene Funktion an: lim (h-> 0) (f (x + h) - f (x)) / h = lim (h -> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h -> 0 ) (- 4x - 4h - 2 + 4x + 2) / h = lim (h -> 0) ((- 4h) / h) Vereinfachung durch h = lim (h -> 0) (- 4) = -4