Wenn tan alpha = x + 1 und tan bita = x-1 Dann finden Sie heraus, was 2cot (alpha-bita) = ist?

Wenn tan alpha = x + 1 und tan bita = x-1 Dann finden Sie heraus, was 2cot (alpha-bita) = ist?
Anonim

Antworten:

# rarr2cot (alpha-beta) = x ^ 2 #

Erläuterung:

In Anbetracht dessen # tanalpha = x + 1 und tanbeta = x-1 #.

# rarr2cot (alpha-beta) #

# = 2 / (tan (alpha-beta)) = 2 / ((tanalpha-tanbeta) / (1 + tanal * tanbeta)) = 2 (1 + tanalphatanbeta) / (tanalpha-tanbeta) #

# = 2 (1 + (x + 1) * (x-1)) / ((x + 1) - (x-1)) #

# = 2 (Abbruch (1) + x ^ 2Cancel (-1)) / (Abbruch (x) + 1Cancel (-x) + 1 = 2 x ^ 2/2 = x ^ 2 #

Antworten:

# 2cot (alpha-beta) = x ^ 2 #

Erläuterung:

Wir haben # tanalpha = x + 1 # und # tanbeta = x-1 #

Wie #tan (alpha-beta) = (tanalpha-tanbeta) / (1 + tanalphatanbeta) #

# 2cot (alpha-beta) = 2 / tan (alpha-beta) = 2 (1 + tanalphatanbeta) / (tanalpha-tanbeta) #

= # 2 (1 + (x + 1) (x-1)) / (x + 1- (x-1)) #

= # 2 * (1 + x ^ 2-1) / (x + 1-x + 1) #

= # (2x ^ 2) / 2 = x ^ 2 #