Pete arbeitete 3 Stunden und berechnete Millie $ 155. Jay arbeitete 6 Stunden und berechnete 230. Wenn Peters Gebühr eine lineare Funktion der Arbeitsstunden ist, finden Sie die Formel für Jay und wie viel würde er für die Arbeit von 77 Stunden für Fred in Rechnung stellen?

Pete arbeitete 3 Stunden und berechnete Millie $ 155. Jay arbeitete 6 Stunden und berechnete 230. Wenn Peters Gebühr eine lineare Funktion der Arbeitsstunden ist, finden Sie die Formel für Jay und wie viel würde er für die Arbeit von 77 Stunden für Fred in Rechnung stellen?
Anonim

Antworten:

Teil A:

#C (t) = 25t + 80 #

Teil B:

#$2005#

Erläuterung:

Angenommen, Pete und Jay verwenden beide die gleiche lineare Funktion, müssen wir ihren Stundensatz ermitteln.

#3# Stunden Arbeitsaufwand #$155#und verdoppeln Sie diese Zeit #6# Stunden, Kosten #$230#, welches ist nicht Verdoppeln Sie den Preis von 3 Stunden Arbeit. Dies bedeutet, dass der Stundensatz um eine Art "Vorabgebühr" erweitert wurde.

Wir wissen, dass 3 Stunden Arbeit und die Vorabkosten anfallen #$155#und 6 Stunden Arbeit und die Vorabkosten #$230#.

Wenn wir abziehen #$155# von #$230#, würden wir 3 Stunden Arbeit und die Vorabgebühr stornieren und uns dabei lassen #$75# für die anderen 3 Stunden Arbeit.

Zu wissen, dass Pete 3 Stunden gearbeitet und aufgeladen wurde #$155#und die Tatsache, dass 3 Stunden Arbeit normalerweise kosten würden #$75#können wir subtrahieren #$75# von #$155# die Anschuldigung von #$80#.

Wir können jetzt eine Funktion mit diesen Informationen erstellen. Lassen # C # die Endkosten in Dollar sein und # t # sei die bearbeitete Zeit in Stunden.

#Farbe (rot) (C (t)) = Farbe (grün) (25t) Farbe (blau) (+ 80) #

#Farbe (rot) (C (t)) # #=># Die Kosten danach # t # Stunden der Arbeit.

#color (grün) (25t) # #=># #$25# für jede geleistete Stunde.

#Farbe (blau) (+ 80) # #=># #$80# Vorabgebühr, unabhängig von der Arbeitszeit.

Mit dieser Funktion können wir dann herausfinden, wie viel 77 Stunden Arbeit kosten würden.

#C (t) = 25t + 80 #

#C (77) = 25 (77) + 80 #

#C (77) = 1925 + 80 #

#C (77) = 2005 #

Die Kosten für 77 Arbeitsstunden wären #$2005#.