Antworten:
# y = x ^ 2 / -6 + x / 3 + 64/3 #
Erläuterung:
Gegeben -
Fokus
Directrix
Der Scheitelpunkt der Parabel liegt im ersten Quadranten. Seine Directrix liegt über dem Scheitelpunkt. Daher öffnet sich die Parabel nach unten.
Die allgemeine Form der Gleichung lautet -
# (x-h) ^ 2 = - 4xxaxx (y-k) #
Woher -
# h = 1 # X-Koordinate des Scheitelpunkts
# k = 21.5 # Y-Koordinate des Scheitelpunkts
Dann -
# (x-1) ^ 2 = -4xx1.5xx (y-21.5) #
# x ^ 2-2x + 1 = -6y + 129 #
# -6y + 129 = x ^ 2-2x + 1 #
# -6y = x ^ 2-2x + 1-129 #
# y = x ^ 2 / -6 + x / 3 + 128/6 #
# y = x ^ 2 / -6 + x / 3 + 64/3 #
Wie lautet die Scheitelpunktform der Gleichung der Parabel mit einem Fokus bei (0, -15) und einer Directrix von y = -16?
Die Scheitelpunktform einer Parabel ist y = a (x-h) + k, aber mit dem Gegebenen ist es einfacher, die Standardform (x-h) ^ 2 = 4c (y-k) zu betrachten. Der Scheitelpunkt der Parabel ist (h, k), die Directrix ist durch die Gleichung y = k-c definiert und der Fokus ist (h, k + c). a = 1 / (4c). Für diese Parabel ist der Fokus (h, k + c) (0, "-" 15), also ist h = 0 und k + c = "-" 15. Die Direktive y = k-c ist y = "-" 16, also k-c = "-" 16. Wir haben jetzt zwei Gleichungen und können die Werte von k und c finden: {(k + c = "-" 15), (kc = "-" 16):} Das Lö
Wie lautet die Scheitelpunktform der Gleichung der Parabel mit einem Fokus bei (11,28) und einer Directrix von y = 21?
Die Gleichung der Parabel in Scheitelpunktform ist y = 1/14 (x-11) ^ 2 + 24.5. Der Scheitelpunkt ist äquidistant vom Fokus (11,28) und der Directrix (y = 21). Der Scheitelpunkt liegt also bei 11, (21 + 7/2) = (11,24.5). Die Gleichung der Parabel in Scheitelpunktform lautet y = a (x-11) ^ 2 + 24.5. Der Abstand des Scheitelpunkts von Directrix ist d = 24,5-21 = 3,5. Wir wissen, d = 1 / (4 | a |) oder a = 1 / (4 * 3,5) = 1 / 14. Da sich die Parabel öffnet, 'a' ist + ive. Daher ist die Parabelgleichung in Scheitelpunktform y = 1/14 (x-11) ^ 2 + 24,5 graph {1/14 (x-11) ^ 2 + 24,5 [-160, 160, -80, 80]} ANS]
Wie lautet die Scheitelpunktform der Gleichung der Parabel mit einem Fokus bei (12,22) und einer Directrix von y = 11?
Y = 1/22 (x-12) ^ 2 + 33/2> "die Gleichung einer Parabel in" Farbe (blau) "Scheitelpunktform" ist. Farbe (rot) (Balken (ul (| Farbe (weiß) (2/2) Farbe (schwarz) (y = a (xh) ^ 2 + k) Farbe (weiß) (2/2) |)) "wo "(h, k)" sind die Koordinaten des Scheitelpunkts und "" ist ein Multiplikator für jeden Punkt "(xy)" auf einer Parabel, "" dessen Fokus und Direktlinie gleich "(x, y)" sind die "Farbe (blau)" - Abstandsformel "" auf "(x, y)" und "(12,22)" rArrsqrt ((x-12) ^ 2 + (y-22) ^ 2) = | y-11 | Far