Antworten:
In Steigungspunktform:
In Standardform:
Erläuterung:
Die allgemeine Neigungspunktform für eine Linie mit Neigung
Für die angegebenen Werte wird dies:
Um dies in ein Standardformular umzuwandeln, müssen wir einige Vereinfachungen vornehmen.
Beginnen Sie mit dem Löschen der Nenner, indem Sie beide Seiten mit multiplizieren
Löschen Sie weiterhin die Nenner, indem Sie beide Seiten mit multiplizieren
Subtrahieren
Hinzufügen
Beide Seiten mit multiplizieren
Die Linie n verläuft durch die Punkte (6,5) und (0, 1). Was ist der y-Achsenabschnitt der Linie k, wenn die Linie k senkrecht zur Linie n verläuft und durch den Punkt (2,4) verläuft?
7 ist der y-Achsenabschnitt der Linie k Zuerst lassen Sie uns die Steigung für die Linie n ermitteln. (1-5) / (0-6) (-4) / - 6 2/3 = m Die Steigung der Linie n beträgt 2/3. Das heißt, die Steigung der Linie k, die senkrecht zur Linie n verläuft, ist der negative Kehrwert von 2/3 oder -3/2. Also lautet die Gleichung, die wir bisher haben: y = (- 3/2) x + b Um b oder den y-Achsenabschnitt zu berechnen, fügen Sie einfach (2,4) in die Gleichung ein. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Der y-Achsenabschnitt ist also 7
Wie lautet die Gleichung der Linie, die durch den Schnittpunkt der Linien y = x und x + y = 6 verläuft und die senkrecht zu der Linie mit Gleichung 3x + 6y = 12 verläuft?
Die Linie ist y = 2x-3. Finden Sie zunächst den Schnittpunkt von y = x und x + y = 6 mit einem Gleichungssystem: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 und seit y = x: => y = 3 Der Schnittpunkt der Linien ist (3,3). Nun müssen wir eine Linie finden, die durch den Punkt (3,3) verläuft und senkrecht zu der Linie 3x + 6y = 12 verläuft. Um die Steigung der Linie 3x + 6y = 12 zu ermitteln, konvertieren Sie sie in die Neigungsschnittpunktform: 3x + 6y = 12 6y = -3x + 12y = -1 / 2x + 2 Die Steigung ist also -1/2. Die Steigungen der senkrechten Linien sind gegensätzlich, das
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo