Sei (ABC) ein beliebiges Dreieck, strecke (AC) bis D so, dass Bar (CD) bar (CB); strecken Sie auch den Stab (CB) in E, so dass der Stab (CE) bar (CA) ist. Segmente bar (DE) und bar (AB) treffen sich bei F. Zeigen Sie, dass (DFB isosceles?
Wie folgt Ref: Gegebene Abbildung "In" DeltaCBD, bar (CD) ~ = bar (CB) => / _ CBD = / _ CDB "Wieder in" DeltaABC und DeltaDEC bar (CE) ~ = bar (AC) -> "nach Konstruktion "bar (CD) ~ = bar (CB) ->" durch Konstruktion "" Und "/ _DCE =" vertikal gegenüberliegend "/ _BCA" Daher "DeltaABC ~ = DeltaDCE => / _ EDC = / _ ABC" Jetzt in "DeltaBDF, / _FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB "So" -Balken (FB) ~ = Balken (FD) => DeltaFBD "isosceles"
Beweisen Sie, dass bei einer Linie und einem Punkt, der nicht auf dieser Linie liegt, genau eine Linie, die durch diesen Punkt verläuft, senkrecht durch diese Linie verläuft? Sie können dies mathematisch oder durch Konstruktion tun (die alten Griechen haben es getan)?
Siehe unten. Nehmen wir an, dass die gegebene Linie AB ist und der Punkt P ist, was nicht auf AB ist. Nehmen wir an, Wir haben eine senkrechte PO auf AB gezeichnet. Wir müssen beweisen, dass diese PO die einzige durch P verlaufende Linie ist, die senkrecht zu AB verläuft. Jetzt werden wir eine Konstruktion verwenden. Konstruieren wir einen weiteren senkrechten PC auf AB von Punkt P aus. Nun der Beweis. Wir haben, OP senkrecht AB [ich kann das senkrechte Vorzeichen, wie Annyoing nicht verwenden] und auch PC senkrecht AB. Also OP || PC. [Beide sind lotrecht auf derselben Linie.] Nun haben sowohl OP als auch PC den
Beweisen Sie die Diagonalen eines Parallelogramms, die sich halbieren, d. H. Balken (AE) = Balken (EC) und Balken (BE) = Balken (ED)?
Siehe Beweis in der Erläuterung. ABCD ist ein Parallelogramm:. AB || DC und AB = DE ................ (1):. m / _ABE = m / _EDC, m / _BAE = m / _ECD .......... (2). Betrachten wir nun DeltaABE und DeltaCDE. Wegen (1) und (2) ist DeltaABE = DeltaCDE. :. AE = EC und BE = ED # Also der Beweis.