Antworten:
Siehe unten.
Erläuterung:
Nehmen wir an, dass die gegebene Linie ist
Nehmen wir an, Wir haben eine Senkrechte gezeichnet
Das müssen wir beweisen, das
Jetzt werden wir eine Konstruktion verwenden.
Konstruieren wir ein anderes Lot
Jetzt der Beweis.
Wir haben,
Und auch,
So,
Jetzt beide
Das heißt, sie sollte zusammenfallen.
So,
Somit verläuft nur eine Linie durch einen Punkt
Hoffe das hilft.
Die Linie n verläuft durch die Punkte (6,5) und (0, 1). Was ist der y-Achsenabschnitt der Linie k, wenn die Linie k senkrecht zur Linie n verläuft und durch den Punkt (2,4) verläuft?
7 ist der y-Achsenabschnitt der Linie k Zuerst lassen Sie uns die Steigung für die Linie n ermitteln. (1-5) / (0-6) (-4) / - 6 2/3 = m Die Steigung der Linie n beträgt 2/3. Das heißt, die Steigung der Linie k, die senkrecht zur Linie n verläuft, ist der negative Kehrwert von 2/3 oder -3/2. Also lautet die Gleichung, die wir bisher haben: y = (- 3/2) x + b Um b oder den y-Achsenabschnitt zu berechnen, fügen Sie einfach (2,4) in die Gleichung ein. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Der y-Achsenabschnitt ist also 7
Eines der berühmtesten Probleme der alten Griechen ist die Konstruktion eines Platzes, dessen Fläche der des Kreisläufers entspricht, wobei nur Kompass und Lineal verwendet werden. Erforschen Sie dieses Problem und diskutieren Sie es? Ist es möglich? Wenn nein oder ja, erläutern Sie, dass Sie klar rational sind.
Es gibt keine Lösung für dieses Problem. Lesen Sie eine Erklärung unter http://www.cut-the-knot.org/arithmetic/antiquity.shtml
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo