Antworten:
Am Ende des 2. Jahres ist sein Guthaben
Am Ende des 3. Jahres ist sein Guthaben
Erläuterung:
Wir erfahren nicht, was Jake mit dem Interesse tut, und wir können nicht davon ausgehen, dass er es auf seinem Konto hinterlegt. In diesem Fall würde die Bank die Zinsen sofort einzahlen und nicht an ihn senden.
Einfache Zinsen werden immer nur für den ursprünglichen Geldbetrag auf dem Konto (als "Auftraggeber" bezeichnet) berechnet.
Ende des 1. Jahres:
Beginn des 2. Jahres
Ende des 2. Jahres:
Beginn des 3. Jahres
Ende des 3. Jahres:
Am Ende des 2. Jahres ist sein Guthaben
Am Ende des 3. Jahres ist sein Guthaben
Er verdient
Er hat jetzt
Im letzten Jahr zahlte Lisa 7000 USD auf ein Konto ein, das 11% Zinsen pro Jahr zahlte, und 1000 USD auf ein Konto, das 5% Zinsen pro Jahr zahlte. Es wurden keine Abhebungen von den Konten vorgenommen. Wie hoch war die Gesamtverzinsung nach einem Jahr?
820 $ Wir kennen die Formel des einfachen Zinses: I = [PNR] / 100 [Wobei I = Zins, P = Principal, N = Jahreszahl und R = Zinssatz] Im ersten Fall ist P = 7000 $. N = 1 und R = 11% Also Interesse (I) = [7000 * 1 * 11] / 100 = 770 Für den zweiten Fall ist P = $ 1000, N = 1 R = 5% Also Interesse (I) = [1000 * 1 * 5] / 100 = 50 Also Gesamtzinsen = 770 $ + 50 $ = 820 $
Im letzten Jahr zahlte Lisa 7000 USD auf ein Konto ein, das 11% Zinsen pro Jahr zahlte, und 1000 USD auf ein Konto, das 5% Zinsen pro Jahr zahlte. Es wurden keine Abhebungen von den Konten vorgenommen. Wie hoch war der prozentuale Anteil der Einlage?
10,25% In einem Jahr würde die Einlage von 7000 $ einen einfachen Zins von 7000 * 11/100 = 770 $ ergeben. Die Einzahlung von 1000 $ würde einen einfachen Zins von 1000 * 5/100 = 50 $ ergeben. Somit beträgt der Gesamtzinssatz für Einlagen von 8000 770 + 50 = 820 USD wäre der Prozentsatz von 8000 USD also 820 * 100/8000 = 82/8% # = 10,25%
Ein Auto nimmt pro Jahr um 20% ab. Am Ende jedes Jahres ist das Auto also zu Beginn des Jahres 80% seines Wertes wert. Wie viel Prozent ihres ursprünglichen Wertes ist das Auto am Ende des dritten Jahres wert?
51,2% Modellieren Sie dies durch eine abnehmende Exponentialfunktion. f (x) = y mal (0,8) ^ x Wobei y der Startwert des Autos und x die Zeit ist, die seit dem Kaufjahr in Jahren vergangen ist. Nach 3 Jahren haben wir also folgendes: f (3) = y mal (0,8) ^ 3 f (3) = 0,512y Das Auto ist also nach 3 Jahren nur noch 51,2% seines ursprünglichen Wertes wert.