Antworten:
Erläuterung:
Der erste ungerade Term sei n
Die Summe aller Ausdrücke sei s
Dann
Term 1
Begriff 2
Begriff 3
Begriff 4
Dann
In Anbetracht dessen
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Gleichung von (1) bis (2), wodurch die Variable s entfernt wird
Sammeln wie Begriffe
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Also die Begriffe sind:
Term 1
Begriff 2
Begriff 3
Begriff 4
Die Summe von drei aufeinander folgenden ungeraden Ganzzahlen ist 1.509. Wie lauten die Ganzzahlen?
501, 503, 505 Die Ganzzahlen seien x-2, x, x + 2. Die Summe der drei aufeinander folgenden ungeraden Ganzzahlen beträgt 1,509. x-2 + x + x + 2 = 1509 3x = 1509 x = 1509/3 x = 503 Zahlen sind x-2 = 503-2 = 501 x = 503 x + 2 = 503 + 2 = 505
Die Summe von drei aufeinander folgenden ungeraden Ganzzahlen ist 99. Wie lauten die drei Zahlen?
Ich habe 31,33,35 gefunden. Lassen Sie uns unsere ungeraden Ganzzahlen nennen: 2n + 1 2n + 3 2n + 5 und schreiben Sie unsere Bedingung als: (2n + 1) + (2n + 3) + (2n + 5) = 99 und lösen Sie für n: 6n + 9 = 99 6n = 90 n = 90/6 = 15, so werden unsere Zahlen sein: 2n + 1 = 31 2n + 3 = 33 2n + 5 = 35
Die Formel auf die Summe der N-Ganzzahlen kennen a) Wie ist die Summe der ersten N aufeinander folgenden quadratischen Ganzzahlen: Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Summe der ersten N aufeinander folgenden Würfel-Ganzzahlen Sigma_ (k = 1) ^ N k ^ 3?
Für S_k (n) = sum_ {i = 0} ^ ni ^ kS_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1 / 6n (1 + n) (1 + 2n) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Wir haben sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + Summe_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 Auflösen für sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-summe_ {i = 0} ^ ni aber summe {{i = 0} ^ ni = ((n + 1) n) / 2 so summe_ {i = 0} ^ ni ^