Antworten:
Beispiele sind ein Pendel, ein in die Luft geworfener Ball, ein Skifahrer, der einen Hügel hinunterrutscht, und die Erzeugung von Elektrizität in einem Kernkraftwerk.
Erläuterung:
Das Prinzip der Energieerhaltung besagt, dass Energie in einem isolierten System weder erzeugt noch zerstört wird, sondern nur von einer Energieart zu einer anderen wechselt.
Der schwierigste Teil bei der Erhaltung von Energieproblemen ist die Identifizierung Ihres Systems.
In all diesen Beispielen ignorieren wir die geringe Energie, die der Fiktion zwischen Objekt und Luftmolekülen verloren geht (Luftwiderstand oder Luftwiderstand).
Beispiele:
-
Ein Pendel:
Wenn das Pendel nach unten schwingt:
potentielle Energie der Schwerkraft des Pendels
#-># kinetische Energie des PendelsWenn das Pendel hochschwingt:
kinetische Energie des Pendels
#-># potentielle Energie der Schwerkraft des Pendels -
Ein Ball in die Luft geworfen:
Während des Wurfes:
Chemische Energie aus Ihren Muskeln
#-># kinetische Energie der KugelWenn der Ball seinen Höhepunkt erreicht:
kinetische Energie der Kugel
#-># potentielle gravitationsenergie der kugelDa fällt der Ball:
potentielle gravitationsenergie der kugel
#-># kinetische Energie der Kugel -
Ein Skifahrer rutscht einen Hügel hinunter:
potentielle Schwerkraftenergie des Skifahrers
#-># kinetische Energie des Skifahrers + thermische Energie von Schnee und Himmel (durch Reibung)
-
Eine zusammengedrückte Feder startet einen Ball in einem Flipperspiel:
Elastische potentielle Energie der Feder
#-># kinetische Energie der Kugel
-
Innerhalb eines Kernkraftwerks:
Kernenergie (aus dem Zerfall von Uran)
#-># thermische energie von wasser
#-># kinetische Energie einer Turbine
#-> # elektrische Energie + thermische Energie (durch Reibung in der Turbinen- und Übertragungsleitung)
Es gibt 30 Münzen in einem Glas. Einige der Münzen sind Groschen und der Rest sind Viertel. Der Gesamtwert der Münzen beträgt 3,20 US-Dollar. Wie schreibt man ein Gleichungssystem für diese Situation?
Mengengleichung: "d + q = 30 Wertgleichung:" 0.10d + .25q = 3,20. Gegeben: 30 Münzen in einem Gefäß. Einige sind Groschen, andere sind Viertel. Gesamtwert = 3,20 $. Definiere Variablen: Sei d = Anzahl der Dimen; q = Anzahl der Viertel Bei diesen Arten von Problemen gibt es immer zwei Gleichungen: Mengengleichung: "" d + q = 30 Wertgleichung: "" 0.10d + .25q = 3.20 Wenn Sie lieber in Pfennigen (ohne Dezimalzahlen) arbeiten, wird Ihre Die zweite Gleichung lautet: 10d + 25q = 320 Verwenden Sie zum Lösen Substitution oder Eliminierung.
An der Hannover High School gibt es 950 Schüler. Das Verhältnis der Anzahl der Erstsemester zu allen Schülern beträgt 3:10. Das Verhältnis der Anzahl der Schüler zu allen Schülern beträgt 1: 2. Wie ist das Verhältnis zwischen der Anzahl der Erstsemester und der zweiten Klasse?
3: 5 Sie wollen zuerst herausfinden, wie viele Studienanfänger es in der High School gibt. Da das Verhältnis von Erstsemester zu allen Schülern 3:10 beträgt, machen Neulinge 30% aller 950 Schüler aus, was bedeutet, dass es 950 (0,3) = 285 Erstsemester gibt. Das Verhältnis der Anzahl der Schülerinnen und Schüler zu allen Schülern beträgt 1: 2, was bedeutet, dass die Schülerinnen und Schüler die Hälfte aller Schüler ausmachen. Also 950 (.5) = 475 Sophomores. Da Sie nach dem Verhältnis von Anzahl zu Studienanfängern zu Zweitstudenten suchen, sollt
Ist "wer" im folgenden Satz das Subjekt, der Prädikat-Nominativ, das direkte Objekt, das indirekte Objekt, das Objekt der Präposition, das Possessiv oder das Appositiv? Bitte verwenden Sie dieses Ticket für das Kind, von dem Sie glauben, dass es es am meisten verdient.
Das Relativpronomen "who" ist Gegenstand des Relativsatzes "wer Sie für am meisten verdient halten". Ein Relativsatz ist eine Gruppe von Wörtern mit einem Subjekt und einem Verb, ist jedoch kein vollständiger Satz, der Informationen über sein Vorläufer "bezieht". Die Relativklausel "Wer ist Ihrer Meinung nach am verdientesten" bezieht sich auf Informationen über das vorausgegangene "Kind". Das Subjekt der Klausel = who Das Verb = verdient