Antworten:
Erläuterung:
Durch Beobachtung würde die längste Länge dem breitesten Winkel und die kürzeste Länge gegenüber dem kleinsten Winkel gegenüberliegen. Der kleinste Winkel ist, wenn man die beiden Angaben nennt,
Wenn die Länge von 15 als kürzeste Seite verwendet wird, sind die Winkel auf jeder Seite gleich. Wir können die Höhe des Dreiecks berechnen
Nun sind die anderen Seiten:
Daher ist der maximale Umfang:
Antworten:
Umfang
Erläuterung:
Lassen
deshalb;
mit der Winkelsummen-Eigenschaft
Verwenden der Sinusregel
Umfang
Zwei Ecken eines Dreiecks haben Winkel von (2 pi) / 3 und (pi) / 4. Wenn eine Seite des Dreiecks eine Länge von 12 hat, was ist der längste mögliche Umfang des Dreiecks?
Der längste mögliche Umfang beträgt 12 + 40,155 + 32,786 = 84,941. Da zwei Winkel (2 pi) / 3 und pi / 4 sind, ist der dritte Winkel pi-pi / 8-pi / 6 = (12 pi-8 pi-3 pi) / 24 - pi / 12. Für den längsten Umfang der Länge 12 muss beispielsweise a der kleinste Winkel pi / 12 sein, und dann werden unter Verwendung der Sinusformel die beiden anderen Seiten 12 / (sin (pi / 12)) = b / (sin ((2pi) /). 3)) = c / (sin (pi / 4)) Daher ist b = (12sin ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) / 0,2588 = 40,155 und c = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) / 0,2588 = 32,786 Der längste
Zwei Ecken eines Dreiecks haben Winkel von (2 pi) / 3 und (pi) / 4. Wenn eine Seite des Dreiecks eine Länge von 4 hat, was ist der längste mögliche Umfang des Dreiecks?
P_max = 28.31 Einheiten Das Problem gibt zwei von drei Winkeln in einem beliebigen Dreieck an. Da sich die Summe der Winkel in einem Dreieck auf 180 Grad oder Pi-Radiant summieren muss, können wir den dritten Winkel finden: (2pi) / 3 + pi / 4 + x = pi x = pi (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Lassen Sie uns das Dreieck zeichnen: Das Problem besagt, dass eine der Seiten des Dreiecks eine Länge von 4 hat, aber welche Seite ist nicht angegeben. Es ist jedoch wahr, dass in jedem gegebenen Dreieck die kleinste Seite dem kleinsten Winkel entgegengesetzt ist. Wenn Sie den Umfang maximi
Zwei Ecken eines Dreiecks haben Winkel von (2 pi) / 3 und (pi) / 4. Wenn eine Seite des Dreiecks eine Länge von 19 hat, was ist der längste mögliche Umfang des Dreiecks?
Größtmögliche Umfangsfarbe (grün) (P = 19 + 51.909 + 63.5752 = 134.4842) Drei Winkel sind (2pi) / 3, pi / 4, pi / 12, da sich die drei Winkel zu pi ^ c addieren. Um den längsten Umfang zu erhalten, Seite 19 sollte dem kleinsten Winkel pi / 12 entsprechen 19 / sin (pi / 12) = b / sin (pi / 4) = c / sin ((2pi) / 3) b = (19 * sin (pi / 4) ) / sin (pi / 12) = 51.909 c = (19 * sin ((2pi) / 3)) / sin (pi / 12) = 63.5752 Längste Umfangsfarbe (grün) (P = 19 + 51.909 + 63.5752 = 134.4842) )