Antworten:
Erläuterung:
In dieser Form der Parabola-Gleichung, d.h.
Der Scheitelpunkt hat Koordinaten von:
Bei diesem Problem:
Der Graph der Linie l in der xy-Ebene verläuft durch die Punkte (2,5) und (4,11). Der Graph der Linie m hat eine Steigung von -2 und einen x-Achsenabschnitt von 2. Wenn der Punkt (x, y) der Schnittpunkt der Linien l und m ist, wie lautet dann der Wert von y?
Y = 2 Schritt 1: Bestimmen Sie die Gleichung der Linie l Wir haben die Steigungsformel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Jetzt nach Punkt-Steigungsform Die Gleichung lautet y - y_1 = m (x - x_1) y - 11 = 3 (x - 4) y = 3x - 12 + 11 y = 3x - 1 Schritt 2: Bestimmen Sie die Gleichung der Linie m. Der x - Achsenabschnitt wird immer angezeigt habe y = 0. Daher ist der angegebene Punkt (2, 0). Mit der Steigung haben wir die folgende Gleichung. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Schritt 3: Schreiben und lösen eines Gleichungssystems Wir möchten die Lösung des Systems {(y =) finden
Der Schwanz von Lees Hund ist 15 cm lang. Wenn der Schwanz von Kits Hund 9 Zentimeter lang ist, um wie viel länger ist der Schwanz von Lees Hund als der Schwanz von Kits Hund?
Es ist 6 cm länger. Da dies ein Wortproblem ist, können wir anstelle der Wörter der ursprünglichen Frage einige mathematischere Wörter einsetzen. Gegeben: Lees Hundeschwanz ist 15 cm lang. Kit's Hundeschwanz ist 9 cm lang. Finden: Der Unterschied zwischen der Länge von Lees Hundeschwanz und Kit's Hundeschwanz. Um den Unterschied zu ermitteln, verwenden wir die Subtraktion. 15cm-9cm = 6cm Deshalb hat der Hund von Lee einen Schwanz, der 6 cm länger ist als der Schwanz von Kit.
Wenn y = 35 ist, ist x = 2 1/2. Wenn der Wert von y direkt mit x ist, was ist dann der Wert von y, wenn der Wert von x 3 1/4 ist?
Wert von y ist 45,5 y prop x oder y = k * x; k ist die Variationskonstante y = 35; x = 2 1/2 oder x = 5/2 oder x = 2,5 :. 35 = k * 2,5 oder k = 35 / 2,5 = 14:. y = 14 * x ist die Variationsgleichung. x = 3 1/4 oder x = 3,25:. y = 14 * 3,25 oder y = 45,5 Der Wert von y ist 45,5 [Ans]