Antworten:
Die Nebelhypothese wurde vom Philosophen Emanuel Kant vorgeschlagen, um zu erklären, wie das gegenwärtige Sonnensystem entstanden sein könnte.
Erläuterung:
Emanuel Kant visualisierte eine sich drehende Staubwolke oder einen Nebel, der sich zu Planeten und Sonne des Sonnensystems verschmolz.
Dies ist eine Hypothese, da es keine Beweise gibt, um die Theorie aufzustellen. Die Idee, dass die Staubwolke existierte und das Sonnensystem bildete, war ein Versuch, den Ursprung des Sonnensystems durch natürliche Ursachen zu erklären.
Der empirische Beweis ist gegen die Nebelhypothese. Die Planeten haben nur 1% der Masse des Sonnensystems. Wenn die Idee der sich drehenden Staubwolke richtig war, sollten die Planeten 1% des Drehimpulses des Sonnensystems haben. Als die moderne Astronomie Messungen des Drehimpulses erlaubte, hatten die Planeten 99% des Drehimpulses.
Gute Theorien machen gute Vorhersagen oder Hypothesen. Schlechte Theorien treffen Vorhersagen, die sich nicht als wahr herausstellen, Hypothesen, die sich als falsch herausstellen.
Die Summe aus drei Zahlen ist 4. Wenn die erste Zahl verdoppelt und die dritte verdreifacht wird, dann ist die Summe zwei weniger als die zweite. Vier mehr als die erste, die der dritten hinzugefügt wurde, sind zwei mehr als die zweite. Finde die Zahlen?
1. = 2, 2. = 3, 3. = -1 Erstellen Sie die drei Gleichungen: Sei 1. = x, 2. = y und die 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "=> 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Beseitigen Sie die Variable y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Lösen Sie für x, indem Sie die Variable z durch Multiplizieren des EQ eliminieren. 1 + EQ. 3 von -2 und zum EQ addieren. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 3x + 4z = 2 ul (-4x - 4z = -4) -x = -2 > x = 2 Lösen Sie für z, indem Sie x in den EQ setzen. 2 & EQ. 3: EQ. 2 mit x: 4 - y +
Die Summe aus drei Zahlen ist 26. Die zweite Zahl ist zweimal die erste und die dritte Zahl ist 6 mehr als die zweite. Was sind die Zahlen?
4,8,14 Zunächst sollten wir versuchen, eine Gleichung daraus zu erstellen. Beginnen wir mit der ersten Nummer. Da wir keine Ahnung haben, was die erste Zahl ist (vorerst), können wir sie x nennen. Da wir keine Ahnung haben, was die zweite Zahl ist (vorerst), aber wir wissen, dass es sich um die erste handelt, können wir sie 2x nennen. Da wir uns nicht sicher sind, was die dritte Zahl ist, können wir sie 2x + 6 nennen (weil es genau die gleiche Nummer ist wie die zweite Zahl, nur mit sechs hinzugefügt). Nun lassen Sie uns unsere Gleichung formulieren! x + 2x + 2x + 6 = 26. Wir sollten zuerst das x i
Die Summe zweier aufeinanderfolgender Zahlen ist 77. Die Differenz zwischen der Hälfte der kleineren und einem Drittel der größeren Zahl ist 6. Wenn x die kleinere Zahl ist und y die größere Zahl ist, stellen die beiden Gleichungen die Summe und die Differenz dar die Zahlen?
X + y = 77 1 / 2x-1 / 3y = 6 Wenn Sie die Zahlen wissen wollen, lesen Sie weiter: x = 38 y = 39