Antworten:
Erläuterung:
Zuallererst enthält das Problem mehr Informationen, als zur Lösung benötigt werden. Wenn die Seite eines regulären Sechsecks gleich ist
Die Berechnung ist einfach. Wir können den Satz des Pythagoras verwenden. Wenn die Seite ist
woraus folgt das
Also wenn Seite ist
Die Fläche eines regelmäßigen Sechsecks beträgt
Jedes dieser Dreiecke hat eine Basis
Die Fläche eines Sechsecks ist daher
Der Umfang eines regulären Sechsecks beträgt 48 Zoll. Wie groß ist die Anzahl der Quadratzentimeter im positiven Unterschied zwischen den Bereichen der umschriebenen und den eingeschriebenen Kreise des Sechsecks? Drücken Sie Ihre Antwort in Form von pi aus.
Farbe (blau) ("Diff. im Bereich zwischen umschriebenen und eingeschriebenen Kreisen") Farbe (grün) (A_d = pi R ^ 2 - pi r ^ 2 = 36 pi - 27 pi = 9pi "Quadratzoll") Umfang des regulären Sechsecks P = 48 "inch" Sechseckseite a = P / 6 = 48/6 = 6 "inch" Ein regelmäßiges Sechseck besteht aus 6 gleichseitigen Dreiecken der Seite a. Eingeschriebener Kreis: Radius r = a / (2 tan Theta), Theta = 60 / 2 = 30 ^ @ r = 6 / (2 tan (30)) = 6 / (2 (1 / sqrt3)) = 3 sqrt 3 "inch" Fläche des eingeschriebenen Kreises A_r = pi r ^ 2 = pi ( 3 sqrt3) ^ 2 = 27 pi "sq
Der Umfang eines Dreiecks beträgt 24 Zoll. Die längste Seite von 4 Zoll ist länger als die kürzeste Seite, und die kürzeste Seite ist drei Viertel der Länge der mittleren Seite. Wie finden Sie die Länge jeder Seite des Dreiecks?
Nun, dieses Problem ist einfach unmöglich. Wenn die längste Seite 4 Zoll ist, kann der Umfang eines Dreiecks nicht 24 Zoll betragen. Sie sagen, dass 4 + (etwas weniger als 4) + (etwas weniger als 4) = 24 ist, was unmöglich ist.
Was ist die Fläche eines regulären Sechsecks mit der Seite 2sqrt3 und dem Apothem 3?
18 sq 3 2p = 6 cdot 2sqrt 3 A = p cdot a = 6 sqrt 3 cdot 3