Antworten:
Orthozentrum des Dreiecks liegt bei
Erläuterung:
Orthozentrum ist der Punkt, wo die drei "Höhen" eines Dreiecks liegen
Treffen. Eine "Höhe" ist eine Linie, die durch einen Scheitelpunkt (Ecke) verläuft
Punkt) und steht im rechten Winkel zur Gegenseite.
auf
am Punkt
Steigung von
Neigung senkrecht
Gleichung der Linie
Steigung von
Neigung senkrecht
Gleichung der Linie
Beim Lösen der Gleichung (1) und (2) erhalten wir ihren Schnittpunkt, welcher
ist das Orthozentrum. Multiplikation der Gleichung (1) mit
wir bekommen,
Was ist das Orthozentrum eines Dreiecks mit Ecken bei (1, 2), (5, 6) und (4, 6) #?
Das Orthozentrum des Dreiecks ist: (1,9) Sei DreieckABC das Dreieck mit Ecken bei A (1,2), B (5,6) und C (4,6). Let, Balken (AL), Balken (BM) und Balken (CN) sind die Höhen auf Seitenbalken (BC), Balken (AC) und Balken (AB). Sei (x, y) der Schnittpunkt von drei Höhen. Steigung des Strichs (AB) = (6-2) / (5-1) = 1 => Steigung des Strichs (CN) = - 1 [:. height] und bar (CN) durchläuft C (4,6) Also, equn. von Takt (CN) ist: y-6 = -1 (x-4) dh Farbe (rot) (x + y = 10 .... bis (1)) Nun ist die Steigung des Strichs (AC) = (6-2) ) / (4-1) = 4/3 => Steigung des Balkens (BM) = - 3/4 [: Höhe] und des Balkens
Was ist das Orthozentrum eines Dreiecks mit Ecken bei (1, 3), (5, 7) und (2, 3) #?
Das Orthozentrum des Dreiecks ABC ist H (5,0). Das Dreieck sei ABC mit Ecken bei A (1,3), B (5,7) und C (2,3). also die Steigung von "Linie" (AB) = (7-3) / (5-1) = 4/4 = 1 Es sei bar (CN) _ | _bar (AB):. Die Steigung der "Linie" CN = -1 / 1 = -1 und durchläuft C (2,3). : .Die equn. von "Linie" CN ist: y-3 = -1 (x-2) => y-3 = -x + 2 dh x + y = 5 ... bis (1) Nun ist die Steigung von "Linie" (BC) = (7-3) / (5-2) = 4/3 Es sei bar (AM) _ | _bar (BC):. Die Steigung der "Linie" AM = -1 / (4/3) = - 3/4 und durchläuft A (1,3). : .Die equn. von "Linie" AM ist:
Was ist das Orthozentrum eines Dreiecks mit Ecken bei (1, 3), (5, 7) und (9, 8) #?
(-10 / 3,61 / 3) Wiederholen der Punkte: A (1,3) B (5,7) C (9,8) Das Orthozentrum eines Dreiecks ist der Punkt, an dem die Höhenlinien relativ zu jeder Seite liegen (geht durch den gegenüberliegenden Scheitelpunkt) trifft sich. Wir brauchen also nur die Gleichungen von 2 Zeilen. Die Steigung einer Linie ist k = (Delta y) / (Delta x) und die Steigung der Linie senkrecht zu der ersten ist p = -1 / k (wenn k! = 0). AB k_1 = (7-3) / (5-1) = 4/4 = 1 => p_1 = -1 BC k = (8-7) / (9-5) = 1/4 => p_2 = -4 Gleichung der Linie (durch C), in der die Höhe senkrecht zu AB (y-y_C) = p (x-x_C) => (y-8) = -1 (x-9) =