Antworten:
Die ganzzahligen Werte von
Erläuterung:
Schreiben wir das wie folgt um
Damit
Daher
Daher sind die ganzzahligen Werte von x
Welches sind die Integralwerte von k, für die die Gleichung (k-2) x ^ 2 + 8x + (k + 4) = 0) sowohl Wurzeln als auch unterschiedliche Wurzeln hat?
-6 <k <4 Damit Wurzeln real, verschieden und möglicherweise negativ sind, Delta> 0 Delta = b ^ 2-4ac Delta = 8 ^ 2-4 (k-2) (k + 4) Delta = 64-4 ( k ^ 2 + 2k-8) Delta = 64-4k ^ 2-8k + 32 Delta = 96-4k ^ 2-8k Da Delta> 0, 96-4k ^ 2-8k> 0 4k ^ 2 + 8k-96 < 0 (4k + 24) (k-4) <0 4 (k + 6) (k-4) <0 Graph {y = 4 (x + 6) (x-4) [-10, 10, -5, 5]} Aus dem obigen Diagramm ist ersichtlich, dass die Gleichung nur dann wahr ist, wenn -6 <k <4 Daher können nur ganze Zahlen zwischen -6 <k <4 die Wurzeln negativ, eindeutig und real sein
Kreis A hat einen Radius von 2 und einen Mittelpunkt von (6, 5). Kreis B hat einen Radius von 3 und einen Mittelpunkt von (2, 4). Wenn der Kreis B mit <1, 1> übersetzt wird, überlappt er den Kreis A? Wenn nicht, wie groß ist der Mindestabstand zwischen den Punkten in beiden Kreisen?
"Kreise überlappen"> "wir müssen hier den Abstand (d)" "zwischen den Zentren mit der Summe der Radien vergleichen." • "Wenn die Summe der Radien"> d "dann überlappen sich die Kreise" • ", wenn die Summe aus Radien "<d", dann keine Überlappung "" vor der Berechnung von d. Wir müssen das neue Zentrum "" von B nach der gegebenen Übersetzung "" unter der Übersetzung "<1,1> (2,4) in (2 + 1) finden. 4 + 1) bis (3,5) larrcolor (rot) "neues Zentrum von B" "um d zu bere
Kreis A hat einen Mittelpunkt bei (-1, -4) und einen Radius von 3. Kreis B hat einen Mittelpunkt bei (-1, 1) und einen Radius von 2. Überschneiden sich die Kreise? Wenn nicht, was ist der kleinste Abstand zwischen ihnen?
Sie überlappen sich nicht. Kleinster Abstand = 0, sie berühren einander. Abstand von Mitte zu Mitte = sqrt ((x_a-x_b) ^ 2 + (y_a-y_b) ^ 2) = sqrt ((0) ^ 2 + (- 5) ^ 2) = 5 Summe der Radien = r_a + r_b = 3 + 2 = 5 Gott segne ... ich hoffe die Erklärung ist nützlich.