Antworten:
Die Längen der Seiten sind:
Erläuterung:
Das angegebene Liniensegment soll aufgerufen werden
Fläche eines Dreiecks
Die Fläche ist 4 quadratische Einheiten, und die Basis hat die Seitenlänge X.
Jetzt haben wir die Basis und die Höhe und die Fläche. Wir können das gleichschenklige Dreieck in zwei rechtwinklige Dreiecke unterteilen, um die verbleibenden Seitenlängen zu ermitteln, die einander gleich sind.
Lassen Sie die verbleibende Seitenlänge =
Zwei Ecken eines gleichschenkligen Dreiecks liegen bei (1, 2) und (3, 1). Wenn die Fläche des Dreiecks 2 ist, wie lang sind die Seiten des Dreiecks?
Finde die Höhe des Dreiecks und benutze Pythagoras. Beginnen Sie mit dem Abrufen der Formel für die Höhe eines Dreiecks H = (2A) / B. Wir wissen, dass A = 2 ist, so dass der Anfang der Frage durch Auffinden der Basis beantwortet werden kann. Die angegebenen Ecken können eine Seite erzeugen, die wir Basis nennen. Der Abstand zwischen zwei Koordinaten auf der XY-Ebene ist durch die Formel sqrt ((X1-X2) ^ 2 + (Y1-Y2) ^ 2) gegeben. PlugX1 = 1, X2 = 3, Y1 = 2 und Y2 = 1, um sqrt ((- 2) ^ 2 + 1 ^ 2) oder sqrt (5) zu erhalten. Da Sie Radikale in der Arbeit nicht vereinfachen müssen, ist die Höhe 4 /
Zwei Ecken eines gleichschenkligen Dreiecks liegen bei (1, 3) und (5, 8). Wenn die Fläche des Dreiecks 8 ist, wie lang sind die Seiten des Dreiecks?
Die Länge der drei Seiten des Dreiecks beträgt 6,40, 4,06, 4,06 Einheiten. Basis des Isozellendreiecks ist B = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2)) = sqrt ((5-1) ^ 2 + (8-3) ^ 2)) = sqrt ( 16 + 25) = sqrt41 ~ 6,40 (2dp) Einheit. Wir wissen, dass der Bereich des Dreiecks A_t = 1/2 * B * H ist, wobei H die Höhe ist. :. 8 = 1/2 * 6,40 · H oder H = 16 / 6,40 (2 dp) ~ 2,5 Einheit. Beine sind L = sqrt (H ^ 2 + (B / 2) ^ 2) = sqrt (2,5 ^ 2 + (6.40 / 2) ^ 2) ~ 4.06 (2dp) Einheit Die Länge der drei Seiten des Dreiecks beträgt 6.40, 4,06, 4,06 Einheiten [Ans]
Zwei Ecken eines gleichschenkligen Dreiecks liegen bei (1, 6) und (2, 7). Wenn die Fläche des Dreiecks 36 ist, wie lang sind die Seiten des Dreiecks?
Maß der drei Seiten ist (1.414, 51.4192, 51.4192) Länge a = sqrt ((2-1) ^ 2 + (7-6) ^ 2) = sqrt 2 = 1.414 Fläche von Delta = 12:h = (Fläche) / (a / 2) = 36 / (1,414 / 2) = 36 / 0,707 = 50,9194 Seite b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((0,707) ^ 2 + (50.9194) ^ 2) b = 51.4192 Da das Dreieck gleichschenklig ist, ist die dritte Seite ebenfalls = b = 51.4192. # Das Maß der drei Seiten ist (1.414, 51.4192, 51.4192).