Antworten:
Scheitelpunkt ist um
Symmetrieachse ist
Erläuterung:
Gleichung
Symmetrieachse ist
Graph {8 (x-10) ^ 2-16 -40, 40, -20, 20} Ans
Der Graph der Linie l in der xy-Ebene verläuft durch die Punkte (2,5) und (4,11). Der Graph der Linie m hat eine Steigung von -2 und einen x-Achsenabschnitt von 2. Wenn der Punkt (x, y) der Schnittpunkt der Linien l und m ist, wie lautet dann der Wert von y?
Y = 2 Schritt 1: Bestimmen Sie die Gleichung der Linie l Wir haben die Steigungsformel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Jetzt nach Punkt-Steigungsform Die Gleichung lautet y - y_1 = m (x - x_1) y - 11 = 3 (x - 4) y = 3x - 12 + 11 y = 3x - 1 Schritt 2: Bestimmen Sie die Gleichung der Linie m. Der x - Achsenabschnitt wird immer angezeigt habe y = 0. Daher ist der angegebene Punkt (2, 0). Mit der Steigung haben wir die folgende Gleichung. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Schritt 3: Schreiben und lösen eines Gleichungssystems Wir möchten die Lösung des Systems {(y =) finden
Wie lauten der Scheitelpunkt, die Symmetrieachse, der Maximal- oder Minimalwert, der Bereich und der Bereich der Funktion und die x- und y-Abschnitte für y = x ^ 2 - 3?
Da dies in der Form y = (x + a) ^ 2 + b ist: a = 0-> Symmetrieachse: x = 0 b = -3-> Scheitelpunkt (0, -3) ist auch der y-Achsenabschnitt Da der Koeffizient des Quadrats ist positiv (= 1) Dies ist eine sogenannte "Talparabel" und der Y-Wert des Scheitelpunkts ist auch das Minimum. Es gibt kein Maximum, also kann der Bereich: -3 <= y <oo x einen beliebigen Wert haben, also domain: -oo <x <+ oo Die x-Abschnitte (wobei y = 0) sind (-sqrt3,0) und (+ sqrt3,0) graph {x ^ 2-3 [-10, 10, -5, 5]}
Was sind der Scheitelpunkt, die Symmetrieachse, der Maximal- oder Minimalwert, der Bereich und der Bereich der Funktion und die x- und y-Abschnitte für y = x ^ 2-10x + 2?
Y = x ^ 2-10x + 2 ist die Gleichung einer Parabel, die sich nach oben öffnet (wegen des positiven Koeffizienten von x ^ 2). Es wird also ein Minimum angezeigt. Die Steigung dieser Parabel ist (dy) / (dx) = 2x-10 und diese Steigung ist am Scheitelpunkt gleich Null. 2x - 10 = 0 -> 2x = 10 -> x = 5 Die X-Koordinate des Scheitelpunkts wird 5 y = 5 ^ 2-10 (5) +2 = sein 25-50 + 2 = -23 Der Scheitelpunkt hat die Farbe (blau) ((5, -23) und die Mindestwertfarbe (blau) (-23 an dieser Stelle). Die Symmetrieachse ist die Farbe (blau) (x) = 5 Die Domäne ist color (blau) (inRR (alle reellen Zahlen)) Der Bereich dieser Gl