Antworten:
Erläuterung:
Die Normale ist die Senkrechte zur Tangente.
Für normal,
Der Graph der Linie l in der xy-Ebene verläuft durch die Punkte (2,5) und (4,11). Der Graph der Linie m hat eine Steigung von -2 und einen x-Achsenabschnitt von 2. Wenn der Punkt (x, y) der Schnittpunkt der Linien l und m ist, wie lautet dann der Wert von y?
Y = 2 Schritt 1: Bestimmen Sie die Gleichung der Linie l Wir haben die Steigungsformel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Jetzt nach Punkt-Steigungsform Die Gleichung lautet y - y_1 = m (x - x_1) y - 11 = 3 (x - 4) y = 3x - 12 + 11 y = 3x - 1 Schritt 2: Bestimmen Sie die Gleichung der Linie m. Der x - Achsenabschnitt wird immer angezeigt habe y = 0. Daher ist der angegebene Punkt (2, 0). Mit der Steigung haben wir die folgende Gleichung. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Schritt 3: Schreiben und lösen eines Gleichungssystems Wir möchten die Lösung des Systems {(y =) finden
Wie lautet die Gleichung der Linie, die durch den Schnittpunkt der Linien y = x und x + y = 6 verläuft und die senkrecht zu der Linie mit Gleichung 3x + 6y = 12 verläuft?
Die Linie ist y = 2x-3. Finden Sie zunächst den Schnittpunkt von y = x und x + y = 6 mit einem Gleichungssystem: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 und seit y = x: => y = 3 Der Schnittpunkt der Linien ist (3,3). Nun müssen wir eine Linie finden, die durch den Punkt (3,3) verläuft und senkrecht zu der Linie 3x + 6y = 12 verläuft. Um die Steigung der Linie 3x + 6y = 12 zu ermitteln, konvertieren Sie sie in die Neigungsschnittpunktform: 3x + 6y = 12 6y = -3x + 12y = -1 / 2x + 2 Die Steigung ist also -1/2. Die Steigungen der senkrechten Linien sind gegensätzlich, das
Wie lautet die Standardform der Gleichung der Parabel mit einer Directrix bei x = -3 und einem Fokus bei (1, -1)?
X = 1/8 (y + 1) ^ 2-8 Parabola ist der Ort eines Punkts, der sich so bewegt, dass seine Entfernung von einem bestimmten Punkt, der als Fokus bezeichnet wird, und einer bestimmten Linie, die als Directrix bezeichnet wird, immer gleich ist. Der Punkt sei (x, y). Sein Abstand vom Fokus (1, -1) ist sqrt ((x-1) ^ 2 + (y + 1) ^ 2) und sein Abstand von der Direktive x = -3 oder x + 3 = 0 ist x + 3 von Parabel ist sqrt ((x-1) ^ 2 + (y + 1) ^ 2) = x + 3 und Quadrieren (x-1) ^ 2 + (y + 1) ^ 2 = (x + 3) ^ 2 dh x ^ 2-2x + 1 + y ^ 2 + 2y + 1 = x ^ 2 + 6x + 9 dh y ^ 2 + 2y-7 = 8x oder 8x = (y + 1) ^ 2-8 oder x = 1 / 8 (y + 1) ^ 2-8 Grap