Wir müssen die Trig-Identität verwenden:
Damit erhalten wir:
Zeigen Sie, dass cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2 ist. Ich bin etwas verwirrt, wenn ich Cos²4π / 10 = cos² (π-6π / 10) und cos²9π / 10 = cos² (π-π / 10) mache, es wird negativ als cos (180 ° -theta) = - costheta in der zweite Quadrant. Wie überprüfe ich die Frage?
Siehe unten. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4 pi) / 10)] = 2 * 1 = 2 = RHS
Die Geschwindigkeit eines Teilchens ist v = 2t + cos (2t). Wenn t = k ist die Beschleunigung 0. Zeigen Sie, dass k = pi / 4?
Siehe unten. Die Ableitung der Geschwindigkeit ist die Beschleunigung, dh die Steigung des Geschwindigkeitszeitdiagramms ist die Beschleunigung. Nehmen wir die Ableitung der Geschwindigkeitsfunktion: v '= 2 - 2sin (2t) Wir können v' durch a ersetzen. a = 2 - 2sin (2t) Setzen Sie nun a auf 0. 0 = 2 - 2sin (2t) -2 = -2sin (2t) 1 = sin (2t) pi / 2 = 2t t = pi / 4 Da wir das wissen 0 <t <2 und die Periodizität der Funktion sin (2x) ist pi. Wir können sehen, dass t = pi / 4 der einzige Zeitpunkt ist, an dem die Beschleunigung 0 ist.
Zeigen Sie, dass (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * Theta / 2)?
Siehe unten. Es sei 1 + costheta + isintheta = r (cosalpha + isinalpha), hier gilt r = sqrt ((1 + costheta) ^ 2 + sin ^ 2 theta) = sqrt (2 + 2 costheta) = sqrt (2 + 4cos ^ 2 (theta / 2) ) -2) = 2cos (Theta / 2) und Tanalpha = sintheta / (1 + Costheta) == (2sin (Theta / 2) cos (Theta / 2)) / (2cos ^ 2 (Theta / 2)) = tan (Theta / 2) oder Alpha = Theta / 2, dann 1 + Costheta-Isintheta = r (cos (-Alpha) + Isin (-Alpha)) = r (Cosalpha-Isinalpha) und wir können schreiben (1 + Costheta + Isintheta) ^ n + (1 + costheta-isintheta) ^ n unter Verwendung des Satzes von DE MOivre als r ^ n (cosnalpha + isinnalpha + cosnalpha-isinn