Antworten:
Erläuterung:
# "Die Fläche (A) eines Drachens ist das Produkt der Diagonalen" #
# • Farbe (weiß) (x) A = d_1d_2 #
# "wobei" d_1 "und" d_2 "die Diagonalen sind" #
# "gegeben" d_1 / d_2 = 3/4 "dann" #
# d_2 = 4 / 3d_1larrd_2color (blau) "ist die längere Diagonale" #
# "eine Gleichung bilden" #
# d_1d_2 = 150 #
# d_1xx4 / 3d_1 = 150 #
# d_1 ^ 2 = 450/4 #
# d_1 = sqrt (450/4) = (15sqrt2) / 2 #
# rArrd_2 = 4 / 3xx (15sqrt2) / 2 = 10sqrt2 #
Das Verhältnis zwischen dem gegenwärtigen Alter von Ram und Rahim beträgt 3: 2. Das Verhältnis zwischen dem gegenwärtigen Alter von Rahim und Aman beträgt jeweils 5: 2. Wie ist das Verhältnis zwischen dem gegenwärtigen Zeitalter von Ram und Aman?
("Ram") / ("Aman") = 15/4 Farbe (braun) ("Verwendung des Verhältnisses im FORMAT eines Bruches") Um die benötigten Werte zu erhalten, können wir uns die Maßeinheiten (Bezeichner) ansehen. Gegeben: ("Ram") / ("Rahim") und ("Rahim") / ("Aman") Ziel ist ("Ram") / ("Aman") Beachten Sie, dass: ("Ram") / (Abbruch ( "Rahim")) xx (cancel ("Rahim")) / ("Aman") = ("Ram") / ("Aman") nach Bedarf Also müssen wir nur multiplizieren und vereinfachen ("Ram"
An der Hannover High School gibt es 950 Schüler. Das Verhältnis der Anzahl der Erstsemester zu allen Schülern beträgt 3:10. Das Verhältnis der Anzahl der Schüler zu allen Schülern beträgt 1: 2. Wie ist das Verhältnis zwischen der Anzahl der Erstsemester und der zweiten Klasse?
3: 5 Sie wollen zuerst herausfinden, wie viele Studienanfänger es in der High School gibt. Da das Verhältnis von Erstsemester zu allen Schülern 3:10 beträgt, machen Neulinge 30% aller 950 Schüler aus, was bedeutet, dass es 950 (0,3) = 285 Erstsemester gibt. Das Verhältnis der Anzahl der Schülerinnen und Schüler zu allen Schülern beträgt 1: 2, was bedeutet, dass die Schülerinnen und Schüler die Hälfte aller Schüler ausmachen. Also 950 (.5) = 475 Sophomores. Da Sie nach dem Verhältnis von Anzahl zu Studienanfängern zu Zweitstudenten suchen, sollt
Die Kerndichte eines Planeten ist rho_1 und die der äußeren Hülle ist rho_2. Der Radius des Kerns ist R und der des Planeten 2R. Das Gravitationsfeld an der äußeren Oberfläche des Planeten ist das gleiche wie an der Oberfläche des Kerns, was das Verhältnis rho / rho_2 ist. ?
3 Nehmen wir an, die Masse des Kerns des Planeten ist m und die der äußeren Schale ist m '. Das Feld auf der Oberfläche des Kerns ist (Gm) / R ^ 2. Auf der Oberfläche der Schale wird es (G (m + m ')) / (2R) ^ 2 Gegebenermaßen sind beide gleich, also (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 oder 4m = m + m 'oder m' = 3m Nun ist m = 4/3 pi R ^ 3 rho_1 (Masse = Volumen * Dichte) und m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Daher ist 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Also ist rho_1 = 7/3 rho_2 oder (rho_1) / (rho_1) / ) = 7/3