Antworten:
Symmetrieachse
Mindestwert der Funktion
Siehe die Erklärung zum Diagramm
Erläuterung:
Die Lösung:
Um die Symmetrieachse zu finden, müssen Sie nach dem Scheitelpunkt auflösen
Formel für den Scheitelpunkt:
Aus dem Gegebenen
Symmetrieachse:
Schon seit
Mindestwert
Der Graph von
Um die Grafik von zu zeichnen
Wann
und wann
Wir haben zwei Punkte an
Gott segne … Ich hoffe die Erklärung ist nützlich.
Die Linie x = 3 ist die Symmetrieachse für den Graphen einer Parabel mit Punkten (1,0) und (4, -3). Wie lautet die Gleichung für die Parabel?
Gleichung der Parabel: y = ax ^ 2 + bx + c. Finde a, b und c. x der Symmetrieachse: x = -b / (2a) = 3 -> b = -6a Schreiben, dass der Graph an Punkt (1, 0) und Punkt (4, -3) vorbeigeht: (1) 0 = a + b + c -> c = - a - b = - a + 6a = 5a (2) -3 = 16a + 4b + c -> -3 = 16a - 24a + 5a = -3a -> a = 1b = -6a = -6; und c = 5a = 5 y = x ^ 2 - 6x + 5 Mit x = 1 prüfen: -> y = 1 - 6 + 5 = 0. OK
Die zwei Vektoren A und B in der Figur haben gleiche Größen von 13,5 m und die Winkel sind θ1 = 33 ° und θ2 = 110 °. Wie findet man (a) die x-Komponente und (b) die y-Komponente ihrer Vektorsumme R, (c) die Größe von R und (d) den Winkel R?
Hier ist was ich habe. Ich welle keine gute Methode, um Ihnen ein Diagramm zu zeichnen, also werde ich versuchen, Sie durch die Schritte zu führen, wenn diese vorbeikommen. Die Idee hier ist also, dass Sie die x-Komponente und die y-Komponente der Vektorsumme R finden können, indem Sie die x-Komponente bzw. die y-Komponente von vec (a) und vec (b) hinzufügen. Vektoren. Für den Vektor vec (a) sind die Dinge ziemlich geradlinig. Die x-Komponente ist die Projektion des Vektors auf der x-Achse, die gleich a_x = a * cos (theta_1) ist. Ebenso ist die y-Komponente die Projektion des Vektors auf der y-Achse a_y
Skizzieren Sie den Graphen von y = 8 ^ x und geben Sie die Koordinaten aller Punkte an, an denen der Graph die Koordinatenachsen kreuzt. Beschreiben Sie vollständig die Transformation, die den Graphen Y = 8 ^ x in den Graphen y = 8 ^ (x + 1) transformiert.
Siehe unten. Exponentialfunktionen ohne vertikale Transformation kreuzen niemals die x-Achse. Daher hat y = 8 ^ x keine x-Abschnitte. Bei y (0) = 8 ^ 0 = 1 wird es einen y-Achsenabschnitt haben. Der Graph sollte wie folgt aussehen. Graph {8 ^ x [-10, 10, -5, 5]} Der Graph von y = 8 ^ (x + 1) ist der Graph von y = 8 ^ x, der um eine Einheit nach links verschoben wurde, so dass es y- Intercept liegt jetzt bei (0, 8). Sie werden auch sehen, dass y (-1) = 1. graph {8 ^ (x + 1) [-10, 10, -5, 5]} Hoffentlich hilft das!