Antworten:
Die Symmetrieachse ist
Erläuterung:
Ausgehend von einer quadratischen Gleichung, die eine Parabel in der Form darstellt:
#y = ax ^ 2 + bx + c #
Wir können in eine Scheitelpunktform umwandeln, indem Sie das Quadrat ausfüllen:
#y = ax ^ 2 + bx + c #
#Farbe (weiß) (y) = a (x - (- b) / (2a)) ^ 2+ (c-b ^ 2 / (4a)) #
#color (weiß) (y) = a (x-h) ^ 2 + k #
mit Scheitelpunkt
Die Symmetrieachse ist die vertikale Linie
In dem gegebenen Beispiel haben wir:
#y = 3x ^ 2-7x-8 #
#Farbe (weiß) (y) = 3 (x-7/6) ^ 2- (8 + 49/12) #
#Farbe (weiß) (y) = 3 (x-7/6) ^ 2-145 / 12 #
Die Symmetrieachse ist also
Graph {(y- (3x ^ 2-7x-8)) (4 (x-7/6) ^ 2 + (y + 145/12) ^ 2-0,01) (x-7/6) = 0 - 5.1, 5.1, -13.2, 1.2}
Was ist die Symmetrieachse und der Scheitelpunkt für den Graphen f (x) = 2/3 (x + 7) ^ 2-5?
Siehe Erklärung Dies ist die Scheitelpunktgleichung eines Quadrats. So können Sie die Werte fast genau aus der Gleichung ablesen. Die Symmetrieachse ist (-1) xx7 -> x = -7 Scheitelpunkt -> (x, y) = (- 7, -5)
Was ist die Symmetrieachse und der Scheitelpunkt für den Graphen f (x) = 2x ^ 2 + x - 3?
Die Symmetrieachse ist x = -1 / 4. Der Scheitelpunkt ist = (-1 / 4, -25 / 8). Wir vervollständigen die Quadrate f (x) = 2x ^ 2 + x-3 = 2 (x ^ 2 + 1) / 2x) -3 = 2 (x ^ 2 + 1 / 2x + 1/16) -3-2 / 16 = 2 (x + 1/4) ^ 2-25 / 8 Die Symmetrieachse ist x = -1 / 4 Der Scheitelpunkt ist = (-1 / 4, -25 / 8) Graph {2x ^ 2 + x-3 [-7,9, 7,9, -3,95, 3,95]}
Skizzieren Sie den Graphen von y = 8 ^ x und geben Sie die Koordinaten aller Punkte an, an denen der Graph die Koordinatenachsen kreuzt. Beschreiben Sie vollständig die Transformation, die den Graphen Y = 8 ^ x in den Graphen y = 8 ^ (x + 1) transformiert.
Siehe unten. Exponentialfunktionen ohne vertikale Transformation kreuzen niemals die x-Achse. Daher hat y = 8 ^ x keine x-Abschnitte. Bei y (0) = 8 ^ 0 = 1 wird es einen y-Achsenabschnitt haben. Der Graph sollte wie folgt aussehen. Graph {8 ^ x [-10, 10, -5, 5]} Der Graph von y = 8 ^ (x + 1) ist der Graph von y = 8 ^ x, der um eine Einheit nach links verschoben wurde, so dass es y- Intercept liegt jetzt bei (0, 8). Sie werden auch sehen, dass y (-1) = 1. graph {8 ^ (x + 1) [-10, 10, -5, 5]} Hoffentlich hilft das!