Die Summe aus drei Zahlen ist 4. Wenn die erste Zahl verdoppelt und die dritte verdreifacht wird, dann ist die Summe zwei weniger als die zweite. Vier mehr als die erste, die der dritten hinzugefügt wurde, sind zwei mehr als die zweite. Finde die Zahlen?
1. = 2, 2. = 3, 3. = -1 Erstellen Sie die drei Gleichungen: Sei 1. = x, 2. = y und die 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "=> 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Beseitigen Sie die Variable y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Lösen Sie für x, indem Sie die Variable z durch Multiplizieren des EQ eliminieren. 1 + EQ. 3 von -2 und zum EQ addieren. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 3x + 4z = 2 ul (-4x - 4z = -4) -x = -2 > x = 2 Lösen Sie für z, indem Sie x in den EQ setzen. 2 & EQ. 3: EQ. 2 mit x: 4 - y +
Die Summe aus drei Zahlen ist 137. Die zweite Zahl ist viermal mehr als die erste Zahl. Die dritte Zahl ist fünf weniger als das Dreifache der ersten Zahl. Wie findest du die drei Nummern?
Die Zahlen lauten 23, 50 und 64. Schreiben Sie zunächst einen Ausdruck für jede der drei Zahlen. Sie werden alle aus der ersten Nummer gebildet, also rufen wir die erste Nummer x an. Die erste Zahl sei x. Die zweite Zahl ist 2x +4. Die dritte Zahl ist 3x -5. Wir erfahren, dass ihre Summe 137 ist. Dies bedeutet, wenn wir alle addieren, lautet die Antwort 137. Schreiben Sie eine Gleichung. (x) + (2x + 4) + (3x - 5) = 137 Die Klammern sind nicht erforderlich, sie sind aus Gründen der Übersichtlichkeit enthalten. 6x -1 = 137 6x = 138 x = 23 Sobald wir die erste Zahl kennen, können wir die beiden andere
Eine Zahl ist 5 weniger als eine andere. Die fünffache Zahl ist 1 weniger als die dreifache Zahl. Was sind die zahlen
Die beiden Zahlen sind 7 und 12. Da es zwei unbekannte Werte gibt, müssen Sie zwei Gleichungen erstellen, die sie miteinander in Beziehung setzen. Jeder Satz im Problem enthält eine der folgenden Gleichungen: Wir lassen y den kleineren Wert und x den größeren Wert. (Dies ist willkürlich, Sie könnten es umkehren und alles wäre gut.) "Eine Zahl, wenn fünf weniger als eine andere": y = x-5 "Fünfmal kleiner ist eine weniger als dreimal so groß" 5y = 3x-1 Verwenden Sie nun die erste Gleichung, um das "y" in der zweiten Gleichung zu ersetzen: 5 (x-5)