Antworten:
Dies ist ein Problem mit Gleichungssystemen.
Erläuterung:
Angenommen, die erste Zahl ist x und die zweite y.
Die Zahlen sind 11 und 12.
Hoffentlich hilft das!
Die Summe von fünf Zahlen ist -1/4. Die Zahlen enthalten zwei Paare von Gegensätzen. Der Quotient zweier Werte ist 2. Der Quotient zweier verschiedener Werte ist -3/4. Was sind die Werte?
Wenn das Paar, dessen Quotient 2 ist, eindeutig ist, gibt es vier Möglichkeiten ... Es wird gesagt, dass die fünf Zahlen zwei Paare von Gegensätzen enthalten, also können wir sie nennen: a, -a, b, -b, c und ohne Verlust der Allgemeinheit sei a> = 0 und b> = 0. Die Summe der Zahlen ist -1/4, also: -1/4 = Farbe (rot) (Abbruch (Farbe (schwarz) (a))) + ( Farbe (rot) (Abbruch (Farbe (schwarz) (- a)))) + Farbe (rot) (Abbruch (Farbe (schwarz) (b)))) + (Farbe (rot) (Abbruch (Farbe (schwarz) (- b)))) + c = c Es wird gesagt, dass der Quotient zweier Werte 2 ist. Lassen Sie uns diese Aussage dahingehend inte
Die Summe aus drei Zahlen ist 4. Wenn die erste Zahl verdoppelt und die dritte verdreifacht wird, dann ist die Summe zwei weniger als die zweite. Vier mehr als die erste, die der dritten hinzugefügt wurde, sind zwei mehr als die zweite. Finde die Zahlen?
1. = 2, 2. = 3, 3. = -1 Erstellen Sie die drei Gleichungen: Sei 1. = x, 2. = y und die 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "=> 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Beseitigen Sie die Variable y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Lösen Sie für x, indem Sie die Variable z durch Multiplizieren des EQ eliminieren. 1 + EQ. 3 von -2 und zum EQ addieren. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 3x + 4z = 2 ul (-4x - 4z = -4) -x = -2 > x = 2 Lösen Sie für z, indem Sie x in den EQ setzen. 2 & EQ. 3: EQ. 2 mit x: 4 - y +
Die Summe zweier aufeinanderfolgender Zahlen ist 77. Die Differenz zwischen der Hälfte der kleineren und einem Drittel der größeren Zahl ist 6. Wenn x die kleinere Zahl ist und y die größere Zahl ist, stellen die beiden Gleichungen die Summe und die Differenz dar die Zahlen?
X + y = 77 1 / 2x-1 / 3y = 6 Wenn Sie die Zahlen wissen wollen, lesen Sie weiter: x = 38 y = 39