Antworten:
Erläuterung:
Um Quadratwurzeln zu multiplizieren, multiplizieren Sie die gleichen Begriffe unter dem Quadratwurzelzeichen, während das Quadratwurzelzeichen oberhalb der Terme bleibt.
Dann werden die Quadrate bestimmt und aus dem Quadratwurzelzeichen genommen.
Bestimmen Sie nun Quadrate durch Faktorisierung.
Entfernen Sie die Quadrate unter dem Quadratwurzelzeichen.
Die Summe zweier Polynome beträgt 10a ^ 2b ^ 2-9a ^ 2b + 6ab ^ 2-4ab + 2. Wenn ein Addend -5a ^ 2b ^ 2 + 12a ^ 2b-5 ist, was ist der andere Addend?
Sehen Sie sich unten einen Lösungsprozess an: Rufen wir den zweiten Addend auf: x Wir können dann schreiben: x + (-5a ^ 2b ^ 2 + 12a ^ 2b - 5) = 10a ^ 2b ^ 2 - 9a ^ 2b + 6ab ^ 2 - 4ab + 2 Um den zweiten Addend zu finden, können wir nach x: x + (-5a ^ 2b ^ 2 + 12a ^ b - 5) - (-5a ^ 2b ^ 2 + 12a ^ 2b - 5) = 10a ^ 2b ^ 2 auflösen - 9a ^ 2b + 6ab ^ 2 - 4ab + 2 - (-5a ^ 2b ^ 2 + 12a ^ 2b - 5) x + 0 = 10a ^ 2b ^ 2 - 9a ^ 2b + 6ab ^ 2 - 4ab + 2 + 5a ^ 2b ^ 2 - 12a ^ 2b + 5 x = 10a ^ 2b ^ 2 - 9a ^ 2b + 6ab ^ 2 - 4ab + 2 + 5a ^ 2b ^ 2 - 12a ^ 2b + 5 Wir können nun ähnliche Begriffe gruppieren und kombi
Welche der folgenden Stimmen ist die richtige Passivstimme von "Ich kenne ihn gut"? a) Er ist mir bekannt. b) Er ist mir bekannt. c) Er ist von mir gut bekannt. d) Er ist mir gut bekannt. e) Er ist von mir gut bekannt. f) Er ist mir gut bekannt.
Nein, es ist nicht Ihre Permutation und Kombination von Mathematik. Viele Grammatiker sagen, dass die englische Grammatik 80% Mathematik, aber 20% Kunst ist. Ich glaube, es. Natürlich hat es auch eine einfache Form. Aber wir müssen die Ausnahmesachen wie PUT-Äußerung und ABER DIE ÄUSSERUNG NICHT IMMER in Erinnerung behalten! Obwohl die Schreibweise SAME ist, handelt es sich um eine Ausnahme. Bislang kenne ich keine Grammatiker, warum? So und so haben viele unterschiedliche Wege. Er ist von mir gut bekannt, es ist eine gewöhnliche Konstruktion. Nun, es ist ein Adverb, die Regel ist, zwischen Au
Was ist (sq (5+)) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5) sqrt (3)) / (sqrt (3+) sqrt) (3-) Quadrat (5))?
2/7 Wir nehmen A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sq15) - (2sqrt15 + 5-2 * 3-sq15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (aufheben (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - aufheben (2sqrt15) -5 + 2 * 3 + aufheben (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Wenn die Nenner (sqrt3 + sqrt (3 + sqrt5)) und (sqrt3 + sqrt