Betrachtet man einen kleinen Teil von
Die Masse dieses Teils wird also sein
Nun ist die Spannung auf diesen Teil die auf ihn wirkende Zentrifugalkraft, d.h.
Oder,
So,
So,
Eine Straßenlaterne befindet sich an der Spitze einer 15 Fuß hohen Stange. Eine 6 Fuß große Frau geht von der Stange mit einer Geschwindigkeit von 4 ft / sec auf einem geraden Weg. Wie schnell bewegt sich die Spitze ihres Schattens, wenn sie 50 Fuß von der Basis der Stange entfernt ist?
D '(t_0) = 20/3 = 6, bar6 ft / s Verwenden von Thales Proportionalitätssatz für die Dreiecke AhatOB, AhatZH Die Dreiecke sind ähnlich, da sie HatO = 90 °, HatZ = 90 ° und BhatAO gemeinsam haben. Wir haben (AZ) / (AO) = (HZ) / (OB) <=> ω / (ω + x) = 6/15 15w = 6 (ω + x) <15> = 6ω + 6x <=> 9ω = 6x <=> 3ω = 2x <=> ω = (2x) / 3 Es sei OA = d, dann sei d = ω + x = x + (2x) / 3 = (5x) / 3d (t) = (5x (t)) / 3d '(t) = (5x' (t)) / 3 Für t = t_0 gilt x '(t_0) = 4 ft / s. Daher ist d' (t_0) = (5x '( t_0)) / 3 <=> d '(t_0) = 20/3 = 6, bar6 ft
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo
Was ist der Drehimpuls einer Stange mit einer Masse von 2 kg und einer Länge von 6 m, die sich mit 3 Hz um ihren Mittelpunkt dreht?
P = 36 pi "P: Drehimpuls" omega: "Winkelgeschwindigkeit" "I: Trägheitsmoment" I = m * l ^ 2/12 "für Stab, der sich um seinen Mittelpunkt dreht" P = I * omega P = (m * l ^ 2) / 12 * 2 * pi * f P = (Abbruch (2) * 6 ^ 2) / Abbruch (12) * Abbruch (2) * pi * Abbruch (3) P = 36 pi