Antworten:
Erläuterung:
Die Wahrscheinlichkeit, eines zu zeichnen
Die Wahrscheinlichkeit, eines von zu wählen
Die Wahrscheinlichkeit, eines von zu wählen
Da diese Ereignisse unabhängig sind, können wir ihre jeweiligen Wahrscheinlichkeiten multiplizieren, um die Wahrscheinlichkeit für das Auftreten aller drei zu ermitteln, wodurch unsere Antwort erhalten wird
Drei Karten werden zufällig aus einer Gruppe von 7 ausgewählt. Zwei der Karten wurden mit Gewinnzahlen markiert. Wie groß ist die Wahrscheinlichkeit, dass genau 1 der 3 Karten eine Gewinnzahl hat?
Es gibt 7C_3-Möglichkeiten, 3 Karten aus dem Stapel auszuwählen. Das ist die Gesamtzahl der Ergebnisse. Wenn Sie die 2 unmarkierten und 1 markierten Karte erhalten, gibt es 5C_2-Möglichkeiten, um 2 unmarkierte Karten aus den 5 zu wählen, und 2C_1-Methoden, um 1 markierte Karten aus den 2 zu wählen. Die Wahrscheinlichkeit ist also: 7C_3) = 4/7
Drei Karten werden zufällig aus einer Gruppe von 7 ausgewählt. Zwei der Karten wurden mit Gewinnzahlen markiert. Wie groß ist die Wahrscheinlichkeit, dass mindestens eine der 3 Karten eine Gewinnzahl hat?
Sehen wir uns zunächst die Wahrscheinlichkeit an, dass keine Karte gewonnen wird: Erste Karte nicht gewonnen: 5/7 Zweite Karte nicht gewonnen: 4/6 = 2/3 Dritte Karte nicht gewonnen: 3/5 P ("nicht gewonnen") = cancel5 / 7xx2 / cancel3xxcancel3 / cancel5 = 2/7 P ("mindestens ein Gewinner") = 1-2 / 7 = 5/7
Angenommen, eine Person wählt zufällig eine Karte aus einem Stapel von 52 Karten aus und teilt uns mit, dass die ausgewählte Karte rot ist. Wie groß ist die Wahrscheinlichkeit, dass die Karte die Art von Herzen ist, wenn sie rot ist?
1/2 P ["Anzug ist Herz"] = 1/4 P ["Karte ist rot"] = 1/2 P ["Anzug ist Herz | Karte ist rot"] = (P ["Anzug ist Herz UND Karte ist rot "]) / (P [" Karte ist rot "]) = (P [" Karte ist rot | Anzug ist Herz "] * P [" Anzug ist Herz "]) / (P [" Karte ist Rot "]) = (1 * P ["Anzug ist Herz"]) / (P ["Karte ist rot"]) = (1/4) / (1/2) = 2/4 = 1/2