Antworten:
Die zwei Zahlen sind
Erläuterung:
Sei eine Zahl als dargestellt
Je nach problem:
Aus der zweiten Gleichung erhalten wir:
Ersetzen des Werts von
Beide Seiten multiplizieren mit
Wenn Sie die Klammern öffnen und vereinfachen, erhalten Sie:
Hinzufügen
Teilen Sie beide Seiten durch
Seit der zweiten Gleichung haben wir:
Ersetzen
Subtrahieren
Antworten:
Die Zahlen sind 4 und 6.
Erläuterung:
Diese Frage kann auch mit nur einer Variablen gelöst werden.
Definieren Sie jede Variable und bilden Sie dann eine Gleichung.
Lass die größere Zahl sein
Die andere Nummer ist
Die Summe der Zahlen ist 10.
Die Zahlen sind 4 und 6.
Die größere von zwei Zahlen ist 23 weniger als das Doppelte der kleineren. Wenn die Summe der beiden Zahlen 70 ist, wie finden Sie die beiden Zahlen?
39, 31 Sei L & S die größere bzw. kleinere Zahl, dann Erste Bedingung: L = 2S-23 L-2S = -23 .......... (1) Zweite Bedingung: L + S = 70 ........ (2) Durch Abziehen von (1) von (2) erhalten wir L + S- (L-2S) = 70 - (- 23) 3S = 93 S = 31, wobei S = 31 gesetzt wird in (1) erhalten wir L = 2 (31) -23 = 39 Die größere Zahl ist also 39 und die kleinere Zahl ist 31
Die größere von zwei Zahlen ist 5 weniger als das Doppelte der kleineren Zahl. Die Summe der beiden Zahlen ist 28. Wie finden Sie die beiden Zahlen?
Die Zahlen lauten 11 und 17. Diese Frage kann entweder mit 1 oder 2 Variablen beantwortet werden. Ich werde mich für eine Variable entscheiden, weil die zweite als erste geschrieben werden kann.Definieren Sie zuerst die Zahlen und Variablen: Die kleinere Zahl sei x. Der größere Wert ist "5 weniger als das Doppelte x". Die größere Zahl ist 2x-5. Die Summe der Zahlen ist 28. Addieren Sie diese Werte, um 28 x + 2x-5 = 28 "" larr zu erhalten. Lösen Sie nun die Gleichung für x 3x = 28+ 5 3x = 33 x = 11 Die kleinere Zahl ist 11. Die größere Zahl ist 2xx11-5 = 17 11
Die Summe der Ziffern der dreistelligen Zahl ist 15. Die Ziffer der Einheit ist kleiner als die Summe der anderen Ziffern. Die Zehnerstelle ist der Durchschnitt der anderen Ziffern. Wie findest du die Nummer?
A = 3 "; b = 5"; c = 7 Gegeben: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ Betrachten Gleichung (3) -> 2b = (a + c) schreiben der Gleichung (1) als (a + c) + b = 15 Durch Substitution dieser 2b + b = wird 15 Farbe (blau) (=> b = 5) '~~~~~~~~~~~~~~~~~~~~~~~~~ Jetzt haben wir: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~~~~~~~~~~~ Von 1_a "&quo