Antworten:
Erläuterung:
Gegeben:
Wenn wir davon ausgehen, dass die gewünschte Parabel eine vertikale Achse hat, dann ist die Scheitelpunktform einer solchen Parabel
Deshalb muss unsere gewünschte Parabel die Scheitelpunktform haben
Darüber hinaus wissen wir, dass der "zusätzliche Punkt"
Deshalb
Diesen Wert wieder in unsere frühere Version der gewünschten Parabel stecken, erhalten wir
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Wenn die Symmetrieachse nicht vertikal ist:
1 Wenn es vertikal ist, kann ein ähnlicher Prozess verwendet werden, der mit der allgemeinen Form arbeitet
2 Wenn es weder vertikal noch horizontal ist, wird der Prozess komplizierter (fragen Sie als separate Frage, ob dies der Fall ist; im Allgemeinen müssen Sie den Winkel der Symmetrieachse kennen, um eine Antwort zu entwickeln).
Wie lautet die Gleichung der Parabel, die einen Scheitelpunkt bei (0, 0) hat und durch den Punkt (-1, -64) verläuft?
F (x) = - 64x ^ 2 Wenn der Scheitelpunkt bei (0 | 0) ist, f (x) = ax ^ 2 Nun werden wir den Punkt (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
Wie lautet die Gleichung der Parabel, die einen Scheitelpunkt bei (0, 0) hat und durch den Punkt (-1, -4) verläuft?
Y = -4x ^ 2> "ist die Gleichung einer Parabel in" Farbe (blau) "Scheitelpunktform". • Farbe (weiß) (x) y = a (xh) ^ 2 + k "wobei" (h, k) "die Koordinaten des Scheitelpunkts sind und" "ein Multiplikator" "hier" (h, k) = ist (0,0) "also" y = ax ^ 2 ", um einen Ersatz" (-1, -4) "in die Gleichung zu finden" -4 = ay = -4x ^ 2larrcolor (blau) "Gleichung der Parabel" { -4x ^ 2 [-10, 10, -5, 5]}
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo