Die Linie L hat die Gleichung 2x-3y = 5 und die Linie M verläuft durch den Punkt (2, 10) und steht senkrecht zur Linie L. Wie bestimmen Sie die Gleichung für die Linie M?
In der Neigungspunktform ist die Gleichung der Linie M y-10 = -3 / 2 (x-2). In der Neigungsabschnittform ist es y = -3 / 2x + 13. Um die Steigung der Linie M zu finden, müssen wir zuerst die Steigung der Linie L ableiten. Die Gleichung für die Linie L ist 2x-3y = 5. Dies ist eine Standardform, die die Steigung von L nicht direkt angibt. Wir können diese Gleichung jedoch durch Auflösen nach y in die Neigungsschnittform umordnen: 2x-3y = 5 Farbe (weiß) (2x) -3y = 5-2x "" (2x von beiden Seiten abziehen) Farbe (weiß) (2x-3) y = (5-2x) / (- 3) "" (beide Seiten durch -3 teilen) F
Wie lautet die Gleichung der Linie, die durch (-1,1) geht und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (13, -1), (8,4)?
Sehen Sie sich unten einen Lösungsprozess an: Zuerst müssen wir die Steigung der beiden Punkte des Problems ermitteln. Die Steigung kann mithilfe der folgenden Formel ermittelt werden: m = (Farbe (rot) (y_2) - Farbe (blau) (y_1)) / (Farbe (rot) (x_2) - Farbe (blau) (x_1)) wobei m ist Die Neigung und (Farbe (blau) (x_1, y_1)) und (Farbe (rot) (x_2, y_2)) sind die zwei Punkte auf der Linie. Ersetzen der Werte aus den Punkten des Problems ergibt sich: m = (Farbe (rot) (4) - Farbe (blau) (- 1)) / (Farbe (rot) (8) - Farbe (blau) (13)) = (Farbe (rot) (4) + Farbe (blau) (1)) / (Farbe (rot) (8) - Farbe (blau) (13)) = 5 /
Wie lautet die Gleichung der Linie, die durch (-1,1) geht und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (13,1), (- 2,3)?
15x-2y + 17 = 0. Die Steigung m 'der Linie durch die Punkte P (13,1) & Q (-2,3) ist m' = (1-3) / (13 - (- 2)) = - 2/15. Also, wenn die Steigung der reqd. Zeile ist m, also als reqd. Linie ist bot zur Linie PQ, mm '= - 1 rArr m = 15/2. Jetzt verwenden wir die Slope-Point-Formel für die Anforderung. Linie, die bekanntermaßen durch den Punkt (-1,1) verläuft. Somit ist die Gl. von der reqd. Zeile ist, y-1 = 15/2 (x - (-1)) oder 2y-2 = 15x + 15. rArr 15x-2y + 17 = 0.