Antworten:
Siehe Erklärung für die Existenz einer Familie von Parabeln
Wenn wir eine weitere Bedingung auferlegen, dass die Achse die x-Achse ist, erhalten wir ein Mitglied
Erläuterung:
Von der Definition der Parabel über die allgemeine Gleichung bis zur Parabel
Fokus auf
mit 'Abstand von S = Abstand von DR'.
Diese Gleichung hat
Beim Durchlaufen von zwei Punkten erhalten wir zwei Gleichungen, die sich beziehen
das
Einer der beiden Punkte ist der Scheitelpunkt, der die Senkrechte halbiert
von S nach DR,
eine weitere Beziehung. Die Halbierung ist in der bereits erhaltenen implizit
Gleichung. Somit bleibt ein Parameter beliebig. Es gibt kein einzigartiges
Lösung.
Angenommen, die Achse ist x-Achse, hat die Gleichung die Form
So,
Möglicherweise ist eine bestimmte Lösung wie diese erforderlich.
Wie lautet die Gleichung der Parabel, die einen Scheitelpunkt bei (0, 0) hat und durch den Punkt (-1, -64) verläuft?
F (x) = - 64x ^ 2 Wenn der Scheitelpunkt bei (0 | 0) ist, f (x) = ax ^ 2 Nun werden wir den Punkt (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
Wie lautet die Gleichung der Parabel, die einen Scheitelpunkt bei (0, 0) hat und durch den Punkt (-1, -4) verläuft?
Y = -4x ^ 2> "ist die Gleichung einer Parabel in" Farbe (blau) "Scheitelpunktform". • Farbe (weiß) (x) y = a (xh) ^ 2 + k "wobei" (h, k) "die Koordinaten des Scheitelpunkts sind und" "ein Multiplikator" "hier" (h, k) = ist (0,0) "also" y = ax ^ 2 ", um einen Ersatz" (-1, -4) "in die Gleichung zu finden" -4 = ay = -4x ^ 2larrcolor (blau) "Gleichung der Parabel" { -4x ^ 2 [-10, 10, -5, 5]}
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo