Antworten:
Die Nummer ist -9
Erläuterung:
Negativ dreizehnmal eine Nummer (rufen wir die Nummer an
Wenn wir dann 20 hinzufügen (plus 20), können wir dann schreiben:
Dies entspricht dem 11-fachen der Anzahl oder
Wir können diese beiden Begriffe jetzt gleichsetzen und nach lösen
-13n + 20 = -11n + 38 #
Zweimal eine Zahl plus dreimal eine andere Zahl ist gleich 4. Dreimal die erste Zahl plus viermal die andere Zahl ist 7. Was sind die Zahlen?
Die erste Zahl ist 5 und die zweite ist -2. Sei x die erste Zahl und y die zweite. Dann haben wir {(2x + 3y = 4), (3x + 4y = 7):} Wir können jede Methode verwenden, um dieses System zu lösen. Zum Beispiel durch Eliminierung: Erstens: Entfernen von x durch Subtrahieren eines Vielfachen der zweiten Gleichung von der ersten, 2x + 3y- 2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2, dann Ersetzen dieses Ergebnisses in die erste Gleichung, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Die erste Zahl ist also 5 und der zweite ist -2. Die Überprüfung durch Einstecken bestätigt d
Was ist eine reelle Zahl, eine ganze Zahl, eine ganze Zahl, eine rationale Zahl und eine irrationale Zahl?
Erklärung unten Rational Zahlen gibt es in drei verschiedenen Formen. ganze Zahlen, Brüche und terminierende oder wiederkehrende Dezimalzahlen wie 1/3. Irrationale Zahlen sind ziemlich "unordentlich". Sie können nicht als Brüche geschrieben werden, sie sind niemals endende Dezimalzahlen. Ein Beispiel dafür ist der Wert von π. Eine ganze Zahl kann als ganze Zahl bezeichnet werden und ist entweder eine positive oder negative Zahl oder Null. Ein Beispiel hierfür ist 0, 1 und -365.
Ist sqrt21 eine reelle Zahl, eine rationale Zahl, eine ganze Zahl, eine ganze Zahl, eine irrationale Zahl?
Es ist eine irrationale Zahl und daher real. Lassen Sie uns zuerst beweisen, dass sqrt (21) eine reelle Zahl ist, tatsächlich ist die Quadratwurzel aller positiven reellen Zahlen reell. Wenn x eine reelle Zahl ist, definieren wir für die positiven Zahlen sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. Das bedeutet, dass wir alle reellen Zahlen y so betrachten, dass y ^ 2 <= x ist, und die kleinste reelle Zahl nehmen, die größer als alle y ist, das sogenannte Supremum. Bei negativen Zahlen gibt es diese y nicht, da bei allen reellen Zahlen das Quadrat dieser Zahl eine positive Zahl ergibt und alle