Antworten:
CA
Erläuterung:
Die Formel für den Umfang eines Kreises mit Radius
Die Formel für die Fläche eines Kreises mit Radius
Der Radius unseres Kreises ist also
und sein Bereich ist
Die Nummer
Um zu sehen, dass die Fläche eines Kreises ist
Diese Annäherung wird umso besser, je mehr Segmente Sie haben, aber hier ist eine animierte Illustration, die ich zusammengestellt habe …
Zwei parallele Akkorde eines Kreises mit Längen von 8 und 10 dienen als Basis eines in den Kreis eingeschriebenen Trapezes. Wenn die Länge eines Kreisradius 12 ist, wie groß ist die Fläche eines solchen beschriebenen Trapezes?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 1 und 2 Schematisch könnten wir ein Parallelogramm ABCD in einem Kreis einfügen, und unter der Bedingung, dass die Seiten AB und CD Akkorde der Kreise sind, entweder in Abbildung 1 oder in Abbildung 2. Die Bedingung, dass die Seiten AB und CD sein müssen Akkorde des Kreises implizieren, dass das eingeschriebene Trapez ein gleichschenkliges Trapez sein muss, da die Diagonalen des Trapezoids (AC und CD) gleich sind, weil A hat BD = B hat AC = B hatD C = A hat CD und die Linie senkrecht zu AB und CD durch das Zentrum E halbiert diese Akkorde (dies bedeutet, dass AF = B
Wie groß ist der Umfang eines 15-Zoll-Kreises, wenn der Durchmesser eines Kreises direkt proportional zu seinem Radius ist und ein Kreis mit 2 Zoll Durchmesser einen Umfang von ungefähr 6,28 Zoll hat?
Ich glaube, der erste Teil der Frage sollte sagen, dass der Umfang eines Kreises direkt proportional zu seinem Durchmesser ist. Diese Beziehung ist, wie wir Pi bekommen. Wir kennen den Durchmesser und den Umfang des kleineren Kreises "2 in" bzw. "6,28 in". Um das Verhältnis zwischen Umfang und Durchmesser zu bestimmen, dividieren wir den Umfang durch den Durchmesser "6.28 in" / "2 in" = "3.14", was sehr nach pi aussieht. Nun, da wir den Anteil kennen, können wir den Durchmesser des größeren Kreises multiplizieren, um den Umfang des Kreises zu berechnen.
Welches Dach ist steiler: eines mit einem Anstieg von 8 und einem Lauf von 4 oder eines mit einem Anstieg von 12 und einem Lauf von 7?
Das erste Dach ist steiler. Schreiben wir zuerst die Steigungen als Brüche: Slope = m = "Anstieg" / "Laufen" m_1 = 8/4 und m_2 = 12/7 Zum Vergleich: als vereinfachte Brüche. m_1 = 2 und m_2 = 1 5/12 als Brüche mit einem gemeinsamen Nenner: m_1 = 56/28 und m_2 = 48/28 als Dezimalzahlen: m_1 = 2 und m_2 = 1.716 In allen Fällen sehen wir, dass das erste Dach steiler ist.