Antworten:
Es wird davon ausgegangen, dass es sich bei der Erde hauptsächlich um einen flüssigen Ball handelt, in dem Flüssigkeit Konvektionsströme gegeben hätte.
Erläuterung:
Die Kruste ist aus gehärtetem Magma. Es ist möglich, dass es zu einer Zeit noch keine Kruste gab. Der Konvektionsstrom hätte die Flüssigkeitsoberfläche der Erde bewegt. Wenn sich die Kruste verhärtete, hätte die Kruste die Abteilungen in der Kruste gebildet, die jetzt die tektonischen Platten bilden.
Die Grundbewegung des flüssigen Magmas wäre gleich geblieben.
Die Kerndichte eines Planeten ist rho_1 und die der äußeren Hülle ist rho_2. Der Radius des Kerns ist R und der des Planeten 2R. Das Gravitationsfeld an der äußeren Oberfläche des Planeten ist das gleiche wie an der Oberfläche des Kerns, was das Verhältnis rho / rho_2 ist. ?
3 Nehmen wir an, die Masse des Kerns des Planeten ist m und die der äußeren Schale ist m '. Das Feld auf der Oberfläche des Kerns ist (Gm) / R ^ 2. Auf der Oberfläche der Schale wird es (G (m + m ')) / (2R) ^ 2 Gegebenermaßen sind beide gleich, also (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 oder 4m = m + m 'oder m' = 3m Nun ist m = 4/3 pi R ^ 3 rho_1 (Masse = Volumen * Dichte) und m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Daher ist 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Also ist rho_1 = 7/3 rho_2 oder (rho_1) / (rho_1) / ) = 7/3
Ralph gab 72 Dollar für 320 Baseballkarten aus. Es gab 40 "Oldtimer" -Karten. Für jede "Oldtimer" -Karte gab er doppelt so viel aus wie für jede andere Karte. Wie viel Geld gab Ralph für alle 40 "Oldtimer" -Karten aus?
Nachfolgend finden Sie einen Lösungsprozess: Lassen Sie uns die Kosten einer "normalen" Karte nennen: c Nun können wir die Kosten einer "Oldtimer" -Karte nennen: 2c, weil die Kosten doppelt so hoch sind wie die der anderen Karten. Wir wissen, dass Ralph 40 "Oldtimer" -Karten gekauft hat, daher kaufte er: 320 - 40 = 280 "normale" Karten. In dem Wissen, dass er $ 72 ausgegeben hat, können wir diese Gleichung schreiben und nach c auflösen: (40 xx 2c) + (280 xx c) = $ 72 80c + 280c = $ 72 (80 + 280) c = $ 72 360c = $ 72 (360c) / Farbe ( Rot) (360) = ($ 72) / Farbe (Ro
Mars hat eine durchschnittliche Oberflächentemperatur von etwa 200K. Pluto hat eine durchschnittliche Oberflächentemperatur von etwa 40K. Welcher Planet emittiert pro Quadratmeter Oberfläche pro Sekunde mehr Energie? Um einen Faktor wie viel?
Der Mars emittiert pro Flächeneinheit 625-mal mehr Energie als Pluto. Es ist offensichtlich, dass ein heißeres Objekt mehr Schwarzkörperstrahlung emittiert. Wir wissen also bereits, dass der Mars mehr Energie als Pluto abgeben wird. Die Frage ist nur, wie viel. Dieses Problem erfordert das Auswerten der Energie der von beiden Planeten emittierten Schwarzkörperstrahlung. Diese Energie wird als Funktion der Temperatur und der emittierten Frequenz beschrieben: E (nu, T) = (2 pi 2 nu) / c (h nu) / (e ((hnu) / (kT)) - 1) Die Integration über die Frequenz ergibt die Gesamtleistung pro Flächeneinheit