Antworten:
Siehe die vollständige Erklärung.
Erläuterung:
Wenn wir 100 Münzen haben und wir diese Münzen in irgendeiner Weise an eine Gruppe von Menschen geben, heißt es, dass wir Münzen verteilen.
In ähnlicher Weise verteilen wir die Wahrscheinlichkeit, wenn die Gesamtwahrscheinlichkeit (die 1 ist) auf die verschiedenen Werte verteilt wird, die der Zufallsvariablen zugeordnet sind. Daher wird es als Wahrscheinlichkeitsverteilung bezeichnet. Wenn es eine Regel gibt, die bestimmt, welche Wahrscheinlichkeit welchem Wert zugeordnet werden soll, wird diese Regel als Wahrscheinlichkeitsverteilungsfunktion bezeichnet.
Die Binomialverteilung erhält ihren Namen, da die Regel, die die verschiedenen Wahrscheinlichkeiten bestimmt, die Bedingungen der Binomialerweiterung sind.
Was ist eine reelle Zahl, eine ganze Zahl, eine ganze Zahl, eine rationale Zahl und eine irrationale Zahl?
Erklärung unten Rational Zahlen gibt es in drei verschiedenen Formen. ganze Zahlen, Brüche und terminierende oder wiederkehrende Dezimalzahlen wie 1/3. Irrationale Zahlen sind ziemlich "unordentlich". Sie können nicht als Brüche geschrieben werden, sie sind niemals endende Dezimalzahlen. Ein Beispiel dafür ist der Wert von π. Eine ganze Zahl kann als ganze Zahl bezeichnet werden und ist entweder eine positive oder negative Zahl oder Null. Ein Beispiel hierfür ist 0, 1 und -365.
Ist sqrt21 eine reelle Zahl, eine rationale Zahl, eine ganze Zahl, eine ganze Zahl, eine irrationale Zahl?
Es ist eine irrationale Zahl und daher real. Lassen Sie uns zuerst beweisen, dass sqrt (21) eine reelle Zahl ist, tatsächlich ist die Quadratwurzel aller positiven reellen Zahlen reell. Wenn x eine reelle Zahl ist, definieren wir für die positiven Zahlen sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. Das bedeutet, dass wir alle reellen Zahlen y so betrachten, dass y ^ 2 <= x ist, und die kleinste reelle Zahl nehmen, die größer als alle y ist, das sogenannte Supremum. Bei negativen Zahlen gibt es diese y nicht, da bei allen reellen Zahlen das Quadrat dieser Zahl eine positive Zahl ergibt und alle
Sie wählen zwischen zwei Gesundheitsclubs. Club A bietet eine Mitgliedschaft für eine Gebühr von 40 USD sowie eine monatliche Gebühr von 25 USD an. Club B bietet eine Mitgliedschaft für eine Gebühr von 15 USD sowie eine monatliche Gebühr von 30 USD an. Nach wie vielen Monaten werden die Gesamtkosten in jedem Fitnessstudio gleich sein?
X = 5, also wären die Kosten nach fünf Monaten gleich. Sie müssten für jeden Club Gleichungen für den Preis pro Monat schreiben. Sei x gleich der Anzahl der Monate der Mitgliedschaft und y gleich den Gesamtkosten. Club A ist y = 25x + 40 und Club B ist y = 30x + 15. Da wir wissen, dass die Preise y gleich wären, können wir die beiden Gleichungen gleich setzen. 25x + 40 = 30x + 15. Wir können jetzt nach x auflösen, indem wir die Variable isolieren. 25x + 25 = 30x. 25 = 5x. 5 = x Nach fünf Monaten wären die Gesamtkosten gleich.