Antworten:
y = mx + b Berechnen Sie die Steigung m aus den angegebenen Punktwerten, berechnen Sie mit einem der Punktwerte nach b und überprüfen Sie Ihre Lösung anhand der anderen Punktwerte.
Erläuterung:
Eine Linie kann als das Verhältnis der Änderung zwischen horizontalen (x) und vertikalen (y) Positionen betrachtet werden. Für zwei beliebige Punkte, die durch kartesische (ebene) Koordinaten definiert werden, wie z. B. die in diesem Problem angegebenen, müssen Sie einfach die beiden Änderungen (Differenzen) einrichten und dann das Verhältnis zum Erhalten der Steigung m festlegen.
Vertikaldifferenz "y" = y2 - y1 = 3 - 15 = -12
Horizontale Differenz "x" = x2 - x1 = 4 - (-1) = 5
Verhältnis = "Anstieg über dem Lauf" oder vertikal über der Horizontalen = -12/5 für die Steigung, m.
Eine Linie hat die allgemeine Form von y = mx + b oder die vertikale Position ist das Produkt aus Neigung und horizontaler Position x plus dem Punkt, an dem die Linie die x-Achse kreuzt (abfängt) (die Linie, bei der z immer Null ist).) Sobald Sie die Steigung berechnet haben, können Sie einen der beiden bekannten Punkte in die Gleichung einfügen, sodass nur der Abschnittspunkt 'b' unbekannt bleibt.
15 = (-12/5) (-1) + b; 15 = 12/5 + b; 75/5 - 12/5 = b; 63/5 = b
Somit ist die endgültige Gleichung y = - (12/5) x + 63/5
Wir prüfen dies, indem wir den anderen bekannten Punkt in die Gleichung einsetzen:
3 = (-12/5) (4) + 63/5; 3 = -48/5 + 63/5; 3 = 15; 3 = 3 KORREKT!
Der Graph der Linie l in der xy-Ebene verläuft durch die Punkte (2,5) und (4,11). Der Graph der Linie m hat eine Steigung von -2 und einen x-Achsenabschnitt von 2. Wenn der Punkt (x, y) der Schnittpunkt der Linien l und m ist, wie lautet dann der Wert von y?
Y = 2 Schritt 1: Bestimmen Sie die Gleichung der Linie l Wir haben die Steigungsformel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Jetzt nach Punkt-Steigungsform Die Gleichung lautet y - y_1 = m (x - x_1) y - 11 = 3 (x - 4) y = 3x - 12 + 11 y = 3x - 1 Schritt 2: Bestimmen Sie die Gleichung der Linie m. Der x - Achsenabschnitt wird immer angezeigt habe y = 0. Daher ist der angegebene Punkt (2, 0). Mit der Steigung haben wir die folgende Gleichung. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Schritt 3: Schreiben und lösen eines Gleichungssystems Wir möchten die Lösung des Systems {(y =) finden
Linie A und Linie B sind parallel. Die Steigung der Linie A beträgt -2. Was ist der Wert von x, wenn die Steigung der Linie B 3x + 3 ist?
X = -5 / 3 Sei m_A und m_B die Gradienten der Linien A und B, wenn A und B parallel sind, dann ist m_A = m_B Wir wissen also, dass -2 = 3x + 3 ist. Wir müssen uns neu anordnen, um x zu finden. 2-3 = 3x + 3-3 -5 = 3x + 0 (3x) / 3 = x = -5 / 3 Beweis: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo