Wenn Sie ein Exponential mit einer anderen Basis als unterscheiden
#f (x) = x * lnx / ln5 #
Unterscheiden Sie sich nun und wenden Sie die Produktregel an:
# d / dxf (x) = d / dx x * lnx / ln5 + x * d / dx lnx / ln5 #
Wir wissen, dass die Ableitung von
# d / dxf (x) = lnx / ln5 + x / (xln5) #
Vereinfachung der Erträge:
# d / dxf (x) = (lnx + 1) / ln5 #
Beweisen Sie, dass (1 + Log_5 8 + Log_5 2) / log_5 6400 = 0,5. Beachten Sie, dass die Basisnummer jedes Protokolls 5 und nicht 10 ist. Ich bekomme kontinuierlich 1/80, kann jemand bitte helfen?
1/2 6400 = 25 * 256 = 5 ^ 2 * 2 ^ 8 => log (6400) = log (5 ^ 2) + log (2 ^ 8) = 2 + 8 log (2) log (8) = log (2 ^ 3) = 3 log (2) => (1 + log (8) + log (2)) / log (6400) = (1 + 4 log (2)) / (2 + 8 log (2)) = 1/2
Was ist die erste Ableitung und die zweite Ableitung von 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) (die erste Ableitung) (d ^ 2 y) / (dt ^ 2) ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(die zweite Ableitung) y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1/3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(die erste Ableitung)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((2/3-1)) + 8/3 · 1/3 · x ^ ((1/3-1)) (d ^ 2y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) (die zweite Ableitung)
Was ist die zweite Ableitung von x / (x-1) und die erste Ableitung von 2 / x?
Frage 1 Wenn f (x) = (g (x)) / (h (x)), dann gilt nach der Quotientenregel f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Wenn also f (x) = x / (x-1), dann ist die erste Ableitung f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = -1 / x ^ 2 = - x ^ (- 2) und die zweite Ableitung ist f '' (x) = 2x ^ -3 Frage 2 Wenn f (x) = 2 / x Dies kann als f (x) = 2x ^ -1 umgeschrieben werden und unter Verwendung von Standardverfahren für die Ableitung f '(x) = -2x ^ -2 oder wenn Sie f' (x) = - bevorzugen 2 / x ^ 2