Antworten:
Erläuterung:
Wie die Gleichung
Als Produkt von Steigungen zweier senkrechter Linien gilt
Jetzt unter Verwendung der Punktneigungsform die durchlaufende Geradengleichung
Die Linie L hat die Gleichung 2x-3y = 5 und die Linie M verläuft durch den Punkt (2, 10) und steht senkrecht zur Linie L. Wie bestimmen Sie die Gleichung für die Linie M?
In der Neigungspunktform ist die Gleichung der Linie M y-10 = -3 / 2 (x-2). In der Neigungsabschnittform ist es y = -3 / 2x + 13. Um die Steigung der Linie M zu finden, müssen wir zuerst die Steigung der Linie L ableiten. Die Gleichung für die Linie L ist 2x-3y = 5. Dies ist eine Standardform, die die Steigung von L nicht direkt angibt. Wir können diese Gleichung jedoch durch Auflösen nach y in die Neigungsschnittform umordnen: 2x-3y = 5 Farbe (weiß) (2x) -3y = 5-2x "" (2x von beiden Seiten abziehen) Farbe (weiß) (2x-3) y = (5-2x) / (- 3) "" (beide Seiten durch -3 teilen) F
Wie lautet die Gleichung der Linie, die durch den Ursprung verläuft und senkrecht zu der Linie liegt, die durch die folgenden Punkte verläuft: (3,7), (5,8)?
Y = -2x Zuerst müssen wir den Gradienten der durch (3,7) und (5,8) "Gradient" = (8-7) / (5-3) "Gradient" = 1 verlaufenden Linie ermitteln / 2 Da die neue Linie PERPENDICULAR für die durch die 2 Punkte verlaufende Linie ist, können wir diese Gleichung m_1m_2 = -1 verwenden, wobei die Gradienten zweier verschiedener Linien, wenn sie multipliziert werden, gleich -1 sein sollten, wenn die Linien senkrecht zueinander sind, dh im rechten Winkel. Daher würde Ihre neue Linie einen Gradienten von 1 / 2m_2 = -1 m_2 = -2 haben. Jetzt können wir die Punktgradientenformel verwenden, um Ihre
Beweisen Sie, dass bei einer Linie und einem Punkt, der nicht auf dieser Linie liegt, genau eine Linie, die durch diesen Punkt verläuft, senkrecht durch diese Linie verläuft? Sie können dies mathematisch oder durch Konstruktion tun (die alten Griechen haben es getan)?
Siehe unten. Nehmen wir an, dass die gegebene Linie AB ist und der Punkt P ist, was nicht auf AB ist. Nehmen wir an, Wir haben eine senkrechte PO auf AB gezeichnet. Wir müssen beweisen, dass diese PO die einzige durch P verlaufende Linie ist, die senkrecht zu AB verläuft. Jetzt werden wir eine Konstruktion verwenden. Konstruieren wir einen weiteren senkrechten PC auf AB von Punkt P aus. Nun der Beweis. Wir haben, OP senkrecht AB [ich kann das senkrechte Vorzeichen, wie Annyoing nicht verwenden] und auch PC senkrecht AB. Also OP || PC. [Beide sind lotrecht auf derselben Linie.] Nun haben sowohl OP als auch PC den