Antworten:
Beweis unten
Erläuterung:
Erweiterung von
Zeigen Sie, dass cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2 ist. Ich bin etwas verwirrt, wenn ich Cos²4π / 10 = cos² (π-6π / 10) und cos²9π / 10 = cos² (π-π / 10) mache, es wird negativ als cos (180 ° -theta) = - costheta in der zweite Quadrant. Wie überprüfe ich die Frage?
Siehe unten. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4 pi) / 10)] = 2 * 1 = 2 = RHS
Wie verifizieren Sie 1/8 [3 + 4cos2x + cos4x] = cos ^ 4x?
RHS = cos ^ 4x = [(2cos ^ 2x) / 2] ^ 2 = 1/4 [1 + cos2x] ^ 2 = 2 / (4 * 2) [1 + 2cos2x + cos ^ 2 (2x)] = 1 / 8 [2 + 4 cos2x + 2 cos ^ 2 (2x)] = 1/8 [2 + 4 cos2x + 1 + cos4x] = 1/8 [3 + 4 cos2x + cos4x] = LHS
Wie verifizieren Sie cos ^ 2 2A = (1 + cos4A) / 2?
Siehe unten Gebrauchseigenschaft: cos2A = 2cos ^ 2A-1 rechte Seite: = (1 + cos4A) / 2 = (1 + cos2 (2A)) / 2 = (1+ (2cos ^ 2 (2A) -1)) / 2 = (1-1 + 2cos ^ 2 (2A)) / 2 = (Aufheben 1-Aufheben1 + 2cos ^ 2 (2A)) / 2 = (2cos ^ 2 (2A)) / 2 = (Aufheben von 2cos ^ 2 (2A )) / cancel2 = cos ^ 2 (2A) = linke Seite