Wie lautet die Gleichung der Parabel mit einem Scheitelpunkt bei (8, -1) und einem y-Achsenabschnitt von -17?

Wie lautet die Gleichung der Parabel mit einem Scheitelpunkt bei (8, -1) und einem y-Achsenabschnitt von -17?
Anonim

Antworten:

# y = -1 / 4 (x-8) ^ 2-1 #

Erläuterung:

# "die Gleichung einer Parabel in" Farbe (blau) "Scheitelpunktform" # ist.

#Farbe (rot) (Balken (ul (| Farbe (weiß) (2/2) Farbe (schwarz) (y = a (x-h) ^ 2 + k) Farbe (weiß) (2/2) |)))

Dabei sind (h, k) die Koordinaten des Scheitelpunkts und a ist eine Konstante.

# "hier" (h, k) = (8, -1) #

# rArry = a (x-8) ^ 2-1 #

# "um einen Ersatz zu finden" (0, -17) "in die Gleichung" #

# -17 = 64a-1rArra = -1 / 4 #

# rArry = -1 / 4 (x-8) ^ 2-1larrcolor (rot) "in Vertexform" #

Graph {-1/4 (x-8) ^ 2-1 -10, 10, -5, 5}