Antworten:
Erläuterung:
# "die Gleichung einer Parabel in" Farbe (blau) "Scheitelpunktform" # ist.
#Farbe (rot) (Balken (ul (| Farbe (weiß) (2/2) Farbe (schwarz) (y = a (x-h) ^ 2 + k) Farbe (weiß) (2/2) |))) Dabei sind (h, k) die Koordinaten des Scheitelpunkts und a ist eine Konstante.
# "hier" (h, k) = (8, -1) #
# rArry = a (x-8) ^ 2-1 #
# "um einen Ersatz zu finden" (0, -17) "in die Gleichung" #
# -17 = 64a-1rArra = -1 / 4 #
# rArry = -1 / 4 (x-8) ^ 2-1larrcolor (rot) "in Vertexform" # Graph {-1/4 (x-8) ^ 2-1 -10, 10, -5, 5}
Wie lautet die Gleichung einer Parabel mit einem Fokus bei (-2, 6) und einem Scheitelpunkt bei (-2, 9)? Was ist, wenn Fokus und Scheitelpunkt gewechselt werden?
Die Gleichung lautet y = -1 / 12 (x + 2) ^ 2 + 9. Die andere Gleichung ist y = 1/12 (x + 2) * 2 + 6 Der Fokus ist F = (- 2,6) und der Scheitelpunkt ist V = (- 2,9). Daher ist die Directrix y = 12 Der Scheitelpunkt ist der Mittelpunkt des Fokus und der Directrix (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Jeder Punkt (x, y) auf der Parabel ist gleich weit vom Fokus und entfernt die Direktive y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 Graph (( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47, 32
Wie lautet die Gleichung der Parabel mit einem Fokus bei (0, 2) und einem Scheitelpunkt bei (0,0)?
Y = 1 / 8x ^ 2 Wenn der Fokus über oder unter dem Scheitelpunkt liegt, lautet die Scheitelpunktform der Parabelgleichung: y = a (xh) ^ 2 + k "[1]" Wenn der Fokus auf dem liegt links oder rechts den Scheitelpunkt, dann ist die Scheitelpunktform der Parabelgleichung: x = a (yk) ^ 2 + h "[2]" In unserem Fall verwenden wir Gleichung [1], in der wir sowohl h als auch k durch 0 ersetzen: y = a (x-0) ^ 2 + 0 "[3]" Die Brennweite f vom Scheitelpunkt zum Fokus ist: f = y_ Fokus "-y_" Scheitelpunkt f = 2-0 f = 2 Berechnen Sie den Wert von "a" mit der folgenden Gleichung: a = 1 /
Wie lautet die Gleichung der Parabel mit einem Fokus bei (-2, 6) und einem Scheitelpunkt bei (-2, 9)?
Y - 9 = 1/12 (x + 2) ^ 2 Die generische Gleichung lautet y - k = 1 / 4p (x - h) ^ 2 p ist der Distanzscheitelpunkt zum Fokus = 3 (h, k) = Scheitelpunktposition = (- 2, 9)