Antworten:
Der Scheitelpunkt ist um
Erläuterung:
Diese quadratische Funktion ist in "Scheitelpunktform" oder
Seit der
Das Symmetrieachse ist nur eine imaginäre Linie, die durch den Scheitelpunkt einer Parabel verläuft, an der Sie sich falten würden, wenn Sie die Parabel zur Hälfte falten, wobei eine Seite übereinander liegt.
Da wäre das eine senkrechte Linie durch
Was ist die Symmetrieachse und der Scheitelpunkt für den Graphen f (x) = 2/3 (x + 7) ^ 2-5?
Siehe Erklärung Dies ist die Scheitelpunktgleichung eines Quadrats. So können Sie die Werte fast genau aus der Gleichung ablesen. Die Symmetrieachse ist (-1) xx7 -> x = -7 Scheitelpunkt -> (x, y) = (- 7, -5)
Was ist die Symmetrieachse und der Scheitelpunkt für den Graphen f (x) = 2x ^ 2 + x - 3?
Die Symmetrieachse ist x = -1 / 4. Der Scheitelpunkt ist = (-1 / 4, -25 / 8). Wir vervollständigen die Quadrate f (x) = 2x ^ 2 + x-3 = 2 (x ^ 2 + 1) / 2x) -3 = 2 (x ^ 2 + 1 / 2x + 1/16) -3-2 / 16 = 2 (x + 1/4) ^ 2-25 / 8 Die Symmetrieachse ist x = -1 / 4 Der Scheitelpunkt ist = (-1 / 4, -25 / 8) Graph {2x ^ 2 + x-3 [-7,9, 7,9, -3,95, 3,95]}
Skizzieren Sie den Graphen von y = 8 ^ x und geben Sie die Koordinaten aller Punkte an, an denen der Graph die Koordinatenachsen kreuzt. Beschreiben Sie vollständig die Transformation, die den Graphen Y = 8 ^ x in den Graphen y = 8 ^ (x + 1) transformiert.
Siehe unten. Exponentialfunktionen ohne vertikale Transformation kreuzen niemals die x-Achse. Daher hat y = 8 ^ x keine x-Abschnitte. Bei y (0) = 8 ^ 0 = 1 wird es einen y-Achsenabschnitt haben. Der Graph sollte wie folgt aussehen. Graph {8 ^ x [-10, 10, -5, 5]} Der Graph von y = 8 ^ (x + 1) ist der Graph von y = 8 ^ x, der um eine Einheit nach links verschoben wurde, so dass es y- Intercept liegt jetzt bei (0, 8). Sie werden auch sehen, dass y (-1) = 1. graph {8 ^ (x + 1) [-10, 10, -5, 5]} Hoffentlich hilft das!