Antworten:
Bräune finden (22,5)
Antworten:
Erläuterung:
Tan (22,5) = tan t -> tan 2t = tan 45 = 1
Trig Identität verwenden:
-->
Lösen Sie diese quadratische Gleichung für tan t.
Es gibt zwei echte Wurzeln:
tan t = -b / 2a + - d / 2a = -2/1 + 2sqrt2 / 2 = -1 + - sqrt2
Antworten:
Da tan 22.5 positiv ist, nehmen Sie die positive Antwort:
tan (22,5) = - 1 + sqrt2
Die Kosten für die Stifte variieren direkt mit der Anzahl der Stifte. Ein Stift kostet 2,00 $. Wie finden Sie k in der Gleichung für die Kosten für Stifte, verwenden Sie C = kp, und wie finden Sie die Gesamtkosten von 12 Stiften?
Die Gesamtkosten für 12 Stifte betragen 24 US-Dollar. C prop p:. C = k * p; C = 2,00, p = 1:. 2 = k * 1:. k = 2:. C = 2p {k ist konstant] p = 12, C =? C = 2 * p = 2 * 12 = 24,00 $ Die Gesamtkosten von 12 Pens betragen 24,00 $. [ANS]
Wasser tritt mit einer Geschwindigkeit von 10.000 cm3 / min aus einem umgekehrten konischen Tank aus, während Wasser mit einer konstanten Rate in den Tank gepumpt wird, wenn der Tank eine Höhe von 6 m hat und der Durchmesser an der Spitze 4 m beträgt Wenn der Wasserstand bei einer Höhe von 2 m um 20 cm / min ansteigt, wie finden Sie die Geschwindigkeit, mit der das Wasser in den Tank gepumpt wird?
Sei V das Volumen des Wassers in dem Tank in cm 3; h sei die Tiefe / Höhe des Wassers in cm; und sei r der Radius der Wasseroberfläche (oben) in cm. Da der Tank ein umgekehrter Kegel ist, ist dies auch die Wassermasse. Da der Tank eine Höhe von 6 m und einen Radius am oberen Rand von 2 m hat, implizieren ähnliche Dreiecke, dass frac {h} {r} = frac {6} {2} = 3 ist, so dass h = 3r ist. Das Volumen des umgekehrten Wasserkegels ist dann V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Unterscheiden Sie nun beide Seiten bezüglich der Zeit t (in Minuten), um frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} z
Wie finden Sie die exakten Werte von tan 112,5 Grad mit der Halbwinkelformel?
Tan (112,5) = - (1 + sqrt (2)) 112,5 = 112 1/2 = 225/2 Anmerkung: Dieser Winkel liegt im 2. Quadranten. => tan (112,5) = tan (225/5) = sin (225/2) / cos (225/2) = - sqrt ([sin (225/2)) / cos (225/2)] ^ 2) = -sqrt (sin ^ 2 (225/2) / cos ^ 2 (225/2)) Wir sagen, es ist negativ, weil der Wert von tan im zweiten Quadranten immer negativ ist! Als nächstes verwenden wir die folgende Halbwinkelformel: sin ^ 2 (x / 2) = 1/2 (1-cosx) cos ^ 2 (x / 2) = 1/2 (1 + cosx) => tan (112.5) = -sqrt (sin ^ 2 (225/2) / cos ^ 2 (225/2)) = -sqrt ((1/2 (1-cos (225))) / (1/2 (1 + cos (225)) )))) = -sqrt ((1-cos (225)) / (1 + cos (225))))