Antworten:
# y = (x-3) ^ 2-2 #
Erläuterung:
# "die Gleichung einer Parabel in" Farbe (blau) "Scheitelpunktform" # ist.
#Farbe (rot) (Balken (ul (| Farbe (weiß) (2/2) Farbe (schwarz) (y = a (x-h) ^ 2 + k) Farbe (weiß) (2/2) |)))
# "wo" (h, k) "sind die Koordinaten des Scheitelpunkts und ein" #
# "ist ein Multiplikator" #
# "die Parabel in" Farbe (blau) "Standardform" gegeben; y = ax ^ 2 + bx + c #
# "dann ist die x-Koordinate des Scheitelpunkts" #
# • Farbe (weiß) (x) x_ (Farbe (rot) "Scheitelpunkt") = - b / (2a) #
# y = x ^ 2-6x + 7 "ist in Standardform" #
# "mit" a = 1, b = -6 "und" c = 7 #
#x _ ("Scheitelpunkt") = - (- 6) / 2 = 3 #
# "Setzen Sie diesen Wert in die Gleichung für y" #
#y _ ("Scheitelpunkt") = 9-18 + 7 = -2 #
# (h, k) = (3, -2) #
# y = (x-3) ^ 2-2larrcolor (rot) "in Scheitelpunktform" #