Was ist das Größere: 1000 ^ (1000) oder 1001 ^ (999)?

Was ist das Größere: 1000 ^ (1000) oder 1001 ^ (999)?
Anonim

Antworten:

#1000^1000 > 1001^999#

Erläuterung:

Betrachtung der Gleichung

# 1000 ^ 1000 = 1001 ^ x #

ob #x> 999 #

dann

#1000^1000 > 1001^999#

sonst

#1000^1000 < 1001^999#

Anwenden der Protokolltransformation auf beiden Seiten.

# 1000 log 1000 = x log 1001 #

aber

#log 1001 = log1000 + 1 / 1000xx1-1 / (2!) 1/1000 ^ 2xx1 ^ 2 + 2 / (3!) 1/1000 ^ 3xx1 ^ 3 + cdots + 1 / (n!) (d / (dx) log x) _ (x = 1000) 1 ^ n #.

Diese Serie ist abwechselnd und so schnell konvergent

# log1001 ca. log1000 + 1/1000 #

Einsetzen in

#x = 1000 log1000 / (log1000 + 1/1000) = 1000 (3000/3001) #

aber #3000/3001 = 0.999667# so

#x = 999.667> 999 # dann

#1000^1000 > 1001^999#

Antworten:

Hier ist eine alternative Lösung, die den Binomialsatz beweist:

#1001^999 < 1000^1000#

Erläuterung:

Mit dem binomischen Satz:

#(1+1/1000)^999 = 1/(0!) + 999/(1!)1/1000 + (999*998)/(2!)1/1000^2 + (999*998*997)/(3!) 1/1000^3 + … + (999!)/(999!) 1/1000^999#

# <1 / (0!) + 1 / (1!) + 1 / (2!) + 1 / (3!) + … = e ~~ 2.718 #

So:

#1001^999 = (1001/1000 * 1000) ^ 999#

#Farbe (weiß) (1001 ^ 999) = (1 + 1/1000) ^ 999 * 1000 ^ 999 #

#Farbe (weiß) (1001 ^ 999) <e * 1000 ^ 999 <1000 * 1000 ^ 999 = 1000 ^ 1000 #

Antworten:

#1000^1000 > 1001^999#

Erläuterung:

#Use log 1000 = log 10 ^ 3 = 3 und log 1001 = 3.0004340 …

Hier sind die Logarithmen der beiden

#log (1000 ^ 1000) = 1000 log1000 = (1000) (3) = 3000 # und

#log 1001 ^ 999 = (999) (3.0004340 …) = 2997.4 #

Da log eine zunehmende Funktion ist, #1000^1000 > 1001^999#.