Antworten:
# "area" = (4sqrt (3)) / 3 #
# "Umkreis" = 4sqrt (3) #
Erläuterung:
Wenn Sie ein gleichseitiges Dreieck mit Längsseiten halbieren
In unserem Fall,
Die Fläche des Dreiecks ist:
# 1/2 xx Basis xx Höhe = 1/2 xx 2x xx 2 = 2x = (4sqrt (3)) / 3 #
Der Umfang des Dreiecks beträgt:
# 3 xx 2x = 6x = (12 Quadratmeter (3)) / 3 = 4 Quadratmeter (3) #
Die Höhe eines Dreiecks nimmt mit einer Geschwindigkeit von 1,5 cm / min zu, während die Fläche des Dreiecks mit einer Geschwindigkeit von 5 cm² / min zunimmt. Mit welcher Geschwindigkeit ändert sich die Basis des Dreiecks, wenn die Höhe 9 cm und die Fläche 81 cm 2 beträgt?
Hierbei handelt es sich um ein Problem, das mit der Rate der Änderungen (der Änderung) zusammenhängt. Die Variablen von Interesse sind a = Höhe A = Fläche, und da die Fläche eines Dreiecks A = 1 / 2ba ist, benötigen wir b = Basis. Die angegebenen Änderungsraten sind in Einheiten pro Minute angegeben, die (unsichtbare) unabhängige Variable ist also t = Zeit in Minuten. Wir sind gegeben: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm ^ 2 / min Und wir werden gebeten, (db) / dt zu finden, wenn a = 9 cm und A = 81 cm ^ 2 A = 1 / 2ba, differenzierend zu t erhalten wir: d / dt (A) = d / dt
Die Länge jeder Seite eines gleichseitigen Dreiecks wird um 5 Zoll vergrößert, so dass der Umfang jetzt 60 Zoll beträgt. Wie schreibt und löst man eine Gleichung, um die ursprüngliche Länge jeder Seite des gleichseitigen Dreiecks zu ermitteln?
Ich habe gefunden: 15 "in" Lassen Sie uns die ursprünglichen Längen x nennen: Eine Erhöhung von 5 "in" ergibt: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 Neuanordnung: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "in"
Der Umfang eines Dreiecks beträgt 29 mm. Die Länge der ersten Seite ist doppelt so lang wie die zweite Seite. Die Länge der dritten Seite ist 5 länger als die Länge der zweiten Seite. Wie finden Sie die Seitenlängen des Dreiecks?
S_1 = 12 s_2 = 6 s_3 = 11 Der Umfang eines Dreiecks ist die Summe der Längen aller seiner Seiten. In diesem Fall ist der Umfang 29 mm. Also für diesen Fall: s_1 + s_2 + s_3 = 29 Wenn wir also nach der Länge der Seiten suchen, übersetzen wir Aussagen in der gegebenen Form in eine Gleichungsform. "Die Länge der 1. Seite ist doppelt so lang wie die 2. Seite." Um dies zu lösen, weisen wir entweder s_1 oder s_2 eine Zufallsvariable zu. In diesem Beispiel würde x die Länge der zweiten Seite sein, um Brüche in meiner Gleichung zu vermeiden. also wissen wir das: s_1 = 2s_2 abe